Welcome to AI Power Meter’s documentation!¶

This library enables to easily monitor energy usage of machine learning programs. It uses RAPL for the CPU and nvidia-smi for the GPU.

  • Quick start
    • Hardware requirements
    • Installation
    • Measuring my first program
  • Background on power measure
    • General considerations
    • Preliminaries
    • CPU and RAPL
    • GPU and nvidia-smi
    • Measuring multiple programs
    • Related work on power meter libraries
  • Advanced use
    • Recorded fields
    • Monitoring whole machine with Prometheus
    • model complexity
    • Docker integration
  • Dev Documentation
    • Experiment module
    • rapl_power module
    • gpu_power module
  • Deep learning benchmark
    • Summary : One inference with classic deep learning models
    • Experimental protocol
    • Alexnet study
    • Resnet study
    • Bert Transformer
    • Deep rewiring
    • Pruning
    • SNIP
    • Force
  • Machine and Deep Learning Benchmarks with wattmeters
    • OmegaWatt Power meters
    • Tracking at Low Frequency from wifi
    • Track with High Frequency measures
    • Benchmarks
  • Bibliography

Indices and tables¶

  • Index

  • Module Index

  • Search Page

AI Power Meter

Navigation

  • Quick start
  • Background on power measure
  • Advanced use
  • Dev Documentation
  • Deep learning benchmark
  • Machine and Deep Learning Benchmarks with wattmeters
  • Bibliography

Related Topics

  • Documentation overview
    • Next: Quick start

Quick search

©2022, GreenAIUppa. | Powered by Sphinx 5.3.0 & Alabaster 0.7.12 | Page source