Early exits and Split computing MSDNet, SPINN

Simon Lebeaud

GreenAI UPPA

January 24, 2022

Table of Contents

Multi-Scale Dense Networks

- Context
- Problem Setup
- MSDNet's Architecture
- Testing and Results

2 Synergistic Progressive Inference of Neural Networks

- Context
- SPINN's Architecture
- Evaluations

Table of Contents

Multi-Scale Dense Networks

- Context
- Problem Setup
- MSDNet's Architecture
- Testing and Results

2 Synergistic Progressive Inference of Neural Networks

- Context
- SPINN's Architecture
- Evaluations

• State of the art incentivize resource-hungry models

- Two type of images:
 - "Easy" images, need smaller models for classification
 - "Hard" images, need to go through bigger models

So how do we compromise between those type of image for classification?

Two setting for computational constraints:

- Anytime prediction : finite and nondeterministic computational budget *B* > 0 for each images to be classified
- Budgeted batch classification : finite computational budget B > 0 for a set of D_{test} exemples. Here the model decide how much to spend on each images.

Two reasons why intermediate ealy exits hurt performance of DNN :

- The lack of coarse-level features
 - Solution : Multi-scale feature maps
- **2** Early classifiers interfere with later classifiers
 - Solution : Dense connectivity

MSDNet - Architecture

Exit condition :

We have
$$q_k = z(1-q)^{k-1}q$$
 with z such that $\sum_k p(q_k) = 1$
We solve for q : $|D_{test}|\sum_k q_k C_k \leq B$

We determine the threshold θ_k on a validation set such that $|D_{test}|q_k$ samples exit at the k_{th} exit.

MSDNet - Network reduction

Anytime prediction:

- ∢ /⊐ >

Budgeted batch classification:

Table of Contents

Multi-Scale Dense Networks

- Context
- Problem Setup
- MSDNet's Architecture
- Testing and Results

2 Synergistic Progressive Inference of Neural Networks

- Context
- SPINN's Architecture
- Evaluations

э

< □ > < 同 > < 回 > < 回 > < 回 >

SPINN - Architecture

Simon Lebeaud (GreenAI UPPA)

January 24, 2022

イロト イポト イヨト イヨト

13/24

3

- 6 early exits place equidistantly (15%, 30%,..., 90%)
- training end to end or fine tuning on classifier with frozen backbone if pretrained
- $softmax(z)_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$ $arg_i \{ \max_i \{ softmax_i \} > thr_{conf} \}$ $j \in classifier \{ \max_i \{ softmax_i^j \} \}$

14 / 24

SPINN - Model Spliter and Communication Optimiser

Input: Trained model **Output:** Split point candidates

Split at ReLU activation for better packing.

- Lossy 8 bit Compression
- Bit Shuffling
- LZ4 Compressions

æ

< □ > < 同 > < 回 > < 回 > < 回 >

16 / 24

SPINN - Profiler Scheduler

- Device-agnostic:
 - Accuracy per exit
 - Size of data to be transmited
- Device-specific:
 - Latency

Online component :

- Runtime conditions
- Runtime monitoring

- Removes infeasible points
- Ranks and select best design
- Tunes early exit confidence threshold

SPINN - Execution

イロト イポト イヨト イヨト

3

э

January 24, 2022

A D N A B N A B N A B N

э

20 / 24

A D N A B N A B N A B N

∃ →

æ

21/24

January 24, 2022

< □ > < @ >

∃ →

Image: A matrix

3 N 3

January 24, 2022

SPINN delivers a progressive inference network, that is scalable to environment conditions and app-specific performance goals:

- Delivers higher performance than state of the art,
- Doesn't sacrifices on accuracy.

