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Tiny ML: Machine learning for embedded systems
“The Future of Machine Learning is Tiny and Bright. We’re

excited to see what you’ll do!”
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Remainder: Impact of Machine Learning

Figure 1: Carbon footprint comparative study between a neural network
and activities [Han, 2021].

The impact of Machine Learning is non neglictible → Reduce the
size of models !
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Bound effect

Figure 2: New Moore Law for Deep Learning [Fournarakis, 2021]
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What is Tiny ML?

• What is tinyML ?
TinyML: When a neural network model can be run at an
energy cost of below 1 mW

Figure 3: Definition of TinyML by Pete Warden[NEUTON.AI, 2022]
Chaigneau Yanis GreenAI U.P.P.A.
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Tiny ML ?

• This presentation is highly inspired by the book
TinyML: Machine Learning with TensorFlow Lite on Ar-
duino and Ultra-Low-Power Microcontrollers by Warden
and Situnayake [Pete Warden, 2019].

Figure 4: Different models for different capacities [Han, 2021]

It is also inspired by many presentations yielded at the TinyML
Summit every year (March 2022)
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Why ?

• Function – wanting a smart device to act quickly and locally
(independent of the Internet).

• Cost – accomplishing this with simple, lower cost hardware.

• Privacy – not wanting to share all sensor data externally.

• Efficiency – smaller device form-factor, energy-harvesting or
longer battery life.

Chaigneau Yanis GreenAI U.P.P.A.
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Limitations in terms of hardware

• Decrease in energy consumption → limitations in sRAM
memory, flash memory, microprocessor capacities

Figure 5: Per-block memory usage of MobileNetV2 [Ji Lin, 2021]

→ What is important is the Peak memory !
Chaigneau Yanis GreenAI U.P.P.A.
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ML field

Figure 6: Benchmark of the tiny ML field [NEUTON.AI, 2022]
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Micro-controllers

• A typical microcontroller system consists of a processor core,
an on-chip SRAM block and an on-chip embedded flash

• Constraints
• Peak memory usage of the model computations < memory

usage.
• Number of parameters in the model < flash memory storage
• Model size and the peak memory < 250 KB each;
• CNN computation < 60 million multiply-adds per inference at

high accuracy

Chaigneau Yanis GreenAI U.P.P.A.
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Comparison between hardwares

Micro-controller Price Memory Specificities
Arduino Nano 33 BLE Sense 29,70€ 256 kB

SparkFun Edge $16.50 384kB
ST Microelectronics STM32F746G Discovery kit $54.0 340 kB Screen / included camera

Table 1: Main micro-controllers on the market for tinyML

(a) SparkFun Edge (b) Arduino Nano (c) ST

We will focus on the Arduino Nano 33 BLE Sense in the following.Chaigneau Yanis GreenAI U.P.P.A.
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Hardware: Arduino Nano 33 BLE Sense

32-bit ARM® Cortex®-M4 CPU running at 64 MHz, 256kB RAM

Chaigneau Yanis GreenAI U.P.P.A.
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Arduino Nano 33 BLE Sense: Components

Sensor Power
IMU 1mW

Weather (humidity, and temperature) 5µW
barometric sensor 10 µW

microphone 300µW
Gesture, proximity, light ?

Bluetooth® Low Energy connectivity 40 mW

Table 2: Components integrated

Possibility to connect many sensors such as cameras for recognition
(1 mW at 30 FPS for 320 × 320-pixel monochrome image sensor).

Chaigneau Yanis GreenAI U.P.P.A.
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TensorFlow Lite

• Memory constraints → How to reduce the size of neural
networks (storage and memory usage)?

• TensorFlow Lite → represents the model in the FlatBuffers
format (Access to serialized data without parsing/unpacking )

• TensorFlow Lite Converter: converts TensorFlow models to
TensorFlow Lite, applies optimizations to reduce the model
size

• TensorFlow Lite Interpreter This runs an appropriately
converted TensorFlow Lite model using the most efficient
operations for a given device.

Chaigneau Yanis GreenAI U.P.P.A.
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Quantization

• Quantization: Store weights and compute calculations with
fewer bits (INT8)

Figure 8: Quantization efficiency [Fournarakis, 2021]
Chaigneau Yanis GreenAI U.P.P.A.
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Quantization in practice

Figure 9: Quantization error [Fournarakis, 2021]
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Pruning

Figure 10: Another method to reduce the size of neural networks is to use
pruning [Shim, 2021]

Chaigneau Yanis GreenAI U.P.P.A.
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Optimizations

To resume, before sending the model to the micro-controller, three
main optimizations must be done:

• Optimizing latency
• Quantization
• Hardware changes
• Optimizing operation

• Optimizing energy usage
• Measuring Real Power Usage
• Improving Power Usage (Duty Cycling, Cascading Design)
• Quantization, pruning...

• Optimizing model and binary size
• Reducing the size of the executable
• Pruning, quantization...
• Code optimization

Chaigneau Yanis GreenAI U.P.P.A.
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Training and uploading the tinyML model on the MCU

• Training the model before like a classical training with
TensorFlow (and Keras). To do so, training data can be
generated with Arduino sensors, depending on the use case.

• 1) Convert the model for TensorFlow Lite with the TensorFlow
Lite Converter’s Python API:

• (writes Keras model to disk in the form of a FlatBuffer:
space-efficient format)

• Apply optimizations to the model: quantization, pruning...

• 2) Convert the model into a c source file (the extra code
required to load a model from disk would be wasteful given our
limited space) with xxd

Chaigneau Yanis GreenAI U.P.P.A.

Tiny ML: Machine learning for embedded systems 22 / 42



TinyML Micro-controllers Fit models to micro-controllers Applications Patch-Based Inference Conclusion

C model

Figure 11: Representation of the model in C [Pete Warden, 2019]

Chaigneau Yanis GreenAI U.P.P.A.
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Prediction with TensorFlow Lite

Chaigneau Yanis GreenAI U.P.P.A.
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Applications of tinyML

Figure 12: Different possible applications of tinyML [Fournarakis, 2021]
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Wake word detection

Figure 13: Convolutional Neural
network [Pete Warden, 2019]

Figure 14: Trained on Speech
Commands dataset (65,000
one-second-long utterances of 30
short words)
[Pete Warden, 2019]

Chaigneau Yanis GreenAI U.P.P.A.
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Vision with nano controllers

• Visual WakeWords: Person/Not-Person, Object counting,
Object localization:

Figure 15: ImageNet dataset [Aakanksha Chowdhery, 2019]

Figure 16: Visual Wake Words dataset [Aakanksha Chowdhery, 2019]
Chaigneau Yanis GreenAI U.P.P.A.
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Person detection with Arduino

Figure 17: Example with Arduino
[Pete Warden, 2019]

• Data acquisition with
Arducam Mini 2MP Plus
(25.99 dollars) ( 1920 ×
1080)

• Resized to 160 × 120
pixels

• Converted into grayscale
• Model: mobilenet v1

(smallest amount of
RAM at runtime)

Chaigneau Yanis GreenAI U.P.P.A.
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Patch-Based Inference

• Constatation: Imbalanced Memory Distribution of CNNs →
Needs for more memory efficient CNN

• Better method for inference with convolutional neural networks
developed by Ji Lin et al (MIT) [Ji Lin, 2021]

• "Unlike conventional layer-by-layer execution, it operates on a
small spatial region of the feature map at a time, instead of
the whole activation"

Figure 18: Patch-based vs Per-layer computation [Ji Lin, 2021]

Chaigneau Yanis GreenAI U.P.P.A.
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Peak memory reduced: per-layer

Figure 19: With a classical per-layer computation, the memory is filled
with all the filters. [Ji Lin, 2021]

Peak Mem = 2 WHC

Chaigneau Yanis GreenAI U.P.P.A.
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Peak memory reduced: per-batch

Figure 20: On the other hand, with a per-path computation, the peak
memory is reduced as only a part of each filter is stored. [Ji Lin, 2021]

Peak Mem = 2 whC

Chaigneau Yanis GreenAI U.P.P.A.
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Example with 2 layers

Figure 21: Comparison with 2 layers [Ji Lin, 2021]
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Problem with overlapping

Figure 22: Overlapping increases the overall computation (+10% while
reducing the peak memory [Ji Lin, 2021]

Chaigneau Yanis GreenAI U.P.P.A.
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MCUNetV2

Figure 23: Final implementation of Patch-Based Learning [Ji Lin, 2021]

Figure 24: MCUNetV2 architecture [Ji Lin, 2021]

Chaigneau Yanis GreenAI U.P.P.A.
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Results

Figure 25: Memory usage results with patch-based inference [Ji Lin, 2021]

Figure 26: Accuracy on Visual Wake Words Dataset[Ji Lin, 2021]Chaigneau Yanis GreenAI U.P.P.A.
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Conclusion

• TinyML: very dynamic field

• Relatively easy to deploy a ML algorithm on a micro-controller
with TensorFlow lite (a lot of documentation)

• A lot of applications (for environmental studies also)

• Main problem: peak-memory overflow → ideas like
MCUNETV2 and patch-based inference

Chaigneau Yanis GreenAI U.P.P.A.
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Thanks for listening

Thanks for listening ! Any questions ?

Chaigneau Yanis GreenAI U.P.P.A.
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