TinyML Micro-controller

it models to micro-contro

Applications

ons Patch-Bas

nference Conc 0000

Tiny ML: Machine learning for embedded systems "The Future of Machine Learning is Tiny and Bright. We're excited to see what you'll do!"

Chaigneau Yanis

GreenAl U.P.P.A.

05-17-2022

Chaigneau Yanis

GreenAI U.P.P.A

TinyML	Micro-controllers	Fit models to micro-controllers	Applications	Conclusion

1 TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers

4 Applications

5 Patch-Based Inference

6 Conclusion

- * ロ * * 個 * * 目 * * 目 * ・ 目 ・ つ & @

Chaigneau Yanis

TinyML	Micro-controllers	Fit models to micro-controllers	Applications	Conclusion
0000000				

1 TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers
- Applications
- 5 Patch-Based Inference
- 6 Conclusion

- イロト イ団ト イヨト イヨト 三日 うえぐ

Chaigneau Yanis

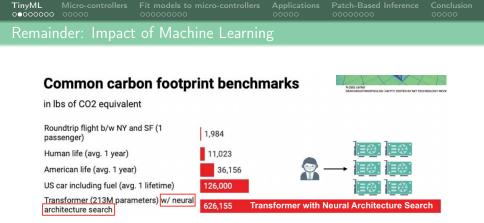


Figure 1: Carbon footprint comparative study between a neural network and activities [Han, 2021].

The impact of Machine Learning is non neglictible \rightarrow Reduce the size of models !

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00●00000		Fit models to micro-controllers		Conclusion
Round	effect			

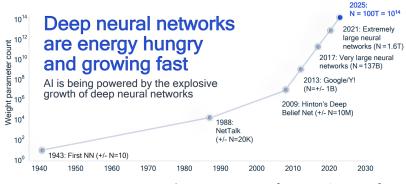


Figure 2: New Moore Law for Deep Learning [Fournarakis, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

		Applications	Conclusion 00000
What is	s Tiny ML?		

• What is tinyML ? *TinyML: When a neural network model can be run at an energy cost of below 1 mW*

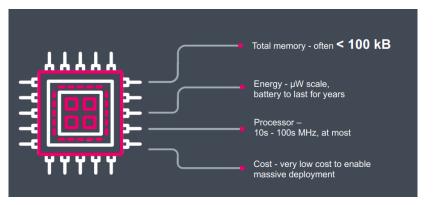


Figure 3: Definition of TinyML by Pete Warden[NEUTON.AI, 2022]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML oooo●ooo		Applications	Conclusion 00000
Tinv M	L ?		

• This presentation is highly inspired by the book *TinyML: Machine Learning with TensorFlow Lite on Ar duino and Ultra-Low-Power Microcontrollers by Warden and Situnayake [Pete Warden, 2019].*

Figure 4: Different models for different capacities [Han, 2021]

It is also inspired by many presentations yielded at the TinyML Summit every year (March 2022)

Chaigneau Yanis

TinyML 00000●00		Applications	Conclusion
Why ?			

- Function wanting a smart device to act quickly and locally (independent of the Internet).
- Cost accomplishing this with simple, lower cost hardware.
- Privacy not wanting to share all sensor data externally.
- Efficiency smaller device form-factor, energy-harvesting or longer battery life.

• Decrease in energy consumption \rightarrow limitations in sRAM memory, flash memory, microprocessor capacities

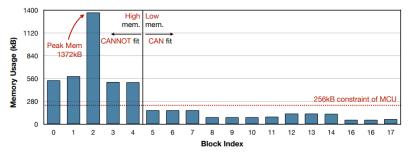


Figure 5: Per-block memory usage of MobileNetV2 [Ji Lin, 2021]

 \rightarrow What is important is the Peak memory !

TinyML 0000000●		Applications	Conclusion
	Ч		

Figure 6: Benchmark of the tiny ML field [NEUTON.AI, 2022]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML	Micro-controllers	Applications	Conclusion
	00000		

TinyML

2 Micro-controllers

8 Fit models to micro-controllers

Applications

5 Patch-Based Inference

6 Conclusion

- ▲日を▲聞を▲開を▲開を▲日をし

Chaigneau Yanis

GreenAl U.P.P.A.

TinyML 00000000		Applications	Conclusion 00000
Micro-	controllers		

- A typical microcontroller system consists of a processor core, an on-chip SRAM block and an on-chip embedded flash
- Constraints
 - Peak memory usage of the model computations < memory usage.
 - Number of parameters in the model < flash memory storage
 - Model size and the peak memory < 250 KB each;
 - CNN computation < 60 million multiply-adds per inference at high accuracy

TinyML 000000000		Fit models to micro-controllers	Applications	Conclusion
Compa	rison betwee	en hardwares		

Micro-controller	Price	Memory	Specificities
Arduino Nano 33 BLE Sense	29,70€	256 kB	
SparkFun Edge	\$16.50	384kB	
ST Microelectronics STM32F746G Discovery kit	\$54.0	340 kB	Screen / included camera

Table 1: Main micro-controllers on the market for tinyML

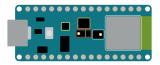
FinyML Micro-controllers Fit models to micro-con 00000000 000€0 0000000000 rs Applicatior

ations Patch-00000

h-Based Inferenc 00000

Hardware: Arduino Nano 33 BLE Sense

NANO 33 BLE SENSE



- Color, brightness, proximity and gesture sensor
- Digital microphone
- Motion, vibration and orientation sensor
- Temperature, humidity and pressure sensor
- Arm Cortex-M4 microcontroller and BLE module

32-bit ARM® Cortex®-M4 CPU running at 64 MHz, 256kB RAM

Chaigneau Yanis

GreenAI U.P.P.A

 TinyML
 Micro-controllers
 Fit models to micro-controllers
 Applications
 Patch-Based Inference
 Conclusion

 0000000
 00000
 000000
 000000
 000000
 0000000
 0000000

 Arduing
 Name
 22
 PI E Sance:
 Components
 000000
 00000000

Arduino Nano 33 BLE Sense: Components

Sensor	Power
IMU	1mW
Weather (humidity, and temperature)	$5\mu W$
barometric sensor	10 μW
microphone	$300\mu W$
Gesture, proximity, light	?
Bluetooth® Low Energy connectivity	40 mW

Table 2: Components integrated

Possibility to connect many sensors such as cameras for recognition (1 mW at 30 FPS for 320 \times 320-pixel monochrome image sensor).

TinyML	Fit models to micro-controllers	Applications	Conclusion
	0000000		

1 TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers
- Applications
- 5 Patch-Based Inference
- 6 Conclusion

GreenAI U.P.P.A

TinyML 00000000		Fit models to micro-controllers	Applications	Conclusion 00000
Tensor	-low Lite			

- Memory constraints → How to reduce the size of neural networks (storage and memory usage)?
- TensorFlow Lite \rightarrow represents the model in the FlatBuffers format (Access to serialized data without parsing/unpacking)
- TensorFlow Lite Converter: converts TensorFlow models to TensorFlow Lite, applies optimizations to reduce the model size
- TensorFlow Lite Interpreter This runs an appropriately converted TensorFlow Lite model using the most efficient operations for a given device.

TinyML	Fit models to micro-controllers
	0000000

Applications

ns Patch-Based 00000000 e Conclusi

Quantization

 Quantization: Store weights and compute calculations with fewer bits (INT8)

Power consumption

Significant reduction in energy for both computations and memory access

Latency

With less memory access and simpler computations, latency can be reduced

Silicon area

Integer math or less bits require less silicon area compared to floating point math and more bits

Add energy (pJ)		Mem access		
INT8	FP32	energy	(pJ)	
0.03	0.9	Cache (64	l-bit)	
30X energy		8KB	10	
reduc		32KB	20	
Mult ene	ray (pJ)	1MB	100	
INT8	FP32	DRAM	1300- 2600	
0.2	3.7		2000	
18.5X energy reduction		Up to 4X energy reduction		

Add area (µm²)							
INT8 FP32							
36	4184						
116X area reduction							
Mult area (µm²)							
Mult are	a (μm²)						
Mult are INT8	<mark>a (μm²)</mark> FP32						

Figure 8: Quantization efficiency [Fournarakis, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML	Fit models to micro-controllers	Applications	Patch-Based Inference	Conclusion
<u> </u>				

Quantization in practice

FP32 tensor $X \approx s_X X_{int} = \hat{X}$ scaled quantized tensor $W = \begin{pmatrix} 0.97 & 0.64 & 0.74 & 1.00 \\ 0.58 & 0.84 & 0.84 & 0.81 \\ 0.00 & 0.18 & 0.90 & 0.28 \\ 0.57 & 0.96 & 0.80 & 0.81 \end{pmatrix} \approx \frac{1}{255} \begin{pmatrix} 247 & 163 & 189 & 255 \\ 148 & 214 & 214 & 207 \\ 0 & 46 & 229 & 71 \\ 145 & 245 & 204 & 207 \end{pmatrix} = s_W W_{uint8}$

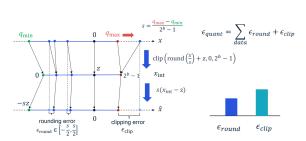


Figure 9: Quantization error [Fournarakis, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML Mic	ro-controllers	Fit models to m 0000●0000	nicro-controllers	Applications	Patch-Based Inference	Conclusion
Pruning						
6 x	ress and acce	lerate the mode	el by removing r	Unstructur - Pruning - Can pru - Robust - Matrix	ghts or filters red Pruning g each weight une more weights to preserve accuracy size remains same (Sparse m cated HW / Library is necessa	

Structured Pruning - Pruning filters or channels - May lose accuracy - Matrix size gets reduced - Actual improvement on latency

Figure 10: Another method to reduce the size of neural networks is to use pruning [Shim, 2021]

TinyML 00000000	Fit models to micro-controllers	Applications	Conclusion 00000

Optimizations

To resume, before sending the model to the micro-controller, three main optimizations must be done:

- Optimizing latency
 - Quantization
 - Hardware changes
 - Optimizing operation
- Optimizing energy usage
 - Measuring Real Power Usage
 - Improving Power Usage (Duty Cycling, Cascading Design)
 - Quantization, pruning...
- Optimizing model and binary size
 - Reducing the size of the executable
 - Pruning, quantization...
 - Code optimization

 TinyML
 Micro-controllers
 Fit models to micro-controllers
 Applications
 Patch-Based Inference
 Conclusion

 ooooooo
 oooooo
 oooooo
 oooooo
 oooooo
 oooooo
 oooooo

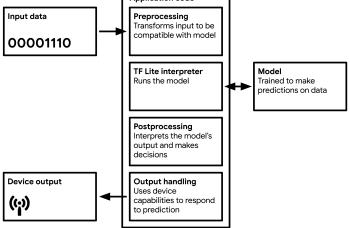
 Training and uploading the tinyML model on the MCU
 MCU

- Training the model before like a classical training with TensorFlow (and Keras). To do so, training data can be generated with Arduino sensors, depending on the use case.
- 1) Convert the model for TensorFlow Lite with the TensorFlow Lite Converter's Python API:
 - (writes Keras model to disk in the form of a FlatBuffer: space-efficient format)
 - Apply optimizations to the model: quantization, pruning...
- 2) Convert the model into a c source file (the extra code required to load a model from disk would be wasteful given our limited space) with xxd

TinyML 00000000		Fit models to micro-controllers	Applications	Conclusion 00000
C mode	el			

```
unsigned char sine_model_quantized_tflite[] = {
    @x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x12,
    @x1c, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14,
    // ...
    0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00,
    @x04, 0x00, 0x00, 0x00
};
unsigned int sine model quantized tflite len = 2512;
```

Figure 11: Representation of the model in C [Pete Warden, 2019]



Chaigneau Yanis

GreenAI U.P.P.A

TinyML		Applications	Conclusion
		00000	

TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers

4 Applications

6 Patch-Based Inference

6 Conclusion

- ▲ロト ▲聞 ト ▲臣 ト ▲臣 ト 一臣 - わんの

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 0000000		ontrollers	Fit models to micro-controllers	Applications 0●000	Patch-Based Inference	Conclusion 00000
Applic	ations	of tiny	/ML			
	Visible				Wearables / Hearables	
	Image				2	
	Sound		GAPS			
	IR Image		P60R01.0H 19188 TWN	Ba	ttery-powered consumer electro	nics
					- E	
	Radar	3339 5576	• сару			
	Bio-sensor		UXVU2/836 0 1943 BIN2	00	IoT Sensors	
						7

Figure 12: Different possible applications of tinyML [Fournarakis, 2021]

GREENWAVES

Gyro/Accel

 Chaigneau Yanis
 GreenAl U.P.P.A.

 Tiny ML: Machine learning for embedded systems
 26 / 42

TinyML 00000000		Fit models to micro-controllers		Conclusion
\ <u>\</u>	التحصيصات المترجب			

Wake word detection

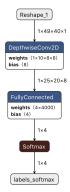


Figure 13: Convolutional Neural network [Pete Warden, 2019]

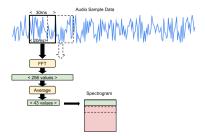


Figure 14: Trained on Speech Commands dataset (65,000 one-second-long utterances of 30 short words) [Pete Warden, 2019]

Chaigneau Yanis

TinyML 00000000			Applications 000●0	Conclusion 00000	
Vision	with nano c	ontrollers			

 Visual WakeWords: Person/Not-Person, Object counting, Object localization:

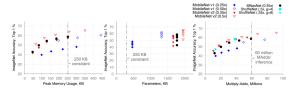


Figure 15: ImageNet dataset [Aakanksha Chowdhery, 2019]

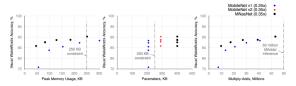


Figure 16: Visual Wake Words dataset [Aakanksha Chowdhery, 2019] and a set [Aakanksha Chowdhery, 2019]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000			Applications 0000●	Conclusion 00000
Person	detection w	vith Arduino		

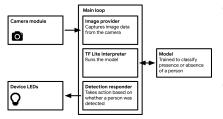


Figure 17: Example with Arduino [Pete Warden, 2019]

- Data acquisition with Arducam Mini 2MP Plus (25.99 dollars) (1920×1080)
- Resized to 160×120 pixels
- Converted into grayscale
- Model: mobilenet v1 (smallest amount of RAM at runtime)

TinyML		Applications	Patch-Based Inference	Conclusion
			0000000	

TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers
- Applications
- **5** Patch-Based Inference

6 Conclusion

ロトメロトメヨトメヨト、ヨークへの

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000			Applications	Patch-Based Inference o●oooooo	Conclusion 00000
Datch I	Racad Inform	200			

- Patch-based mierence
 - Constatation: Imbalanced Memory Distribution of CNNs \rightarrow Needs for more memory efficient CNN
 - Better method for inference with convolutional neural networks developed by Ji Lin et al (MIT) [Ji Lin, 2021]
 - "Unlike conventional layer-by-layer execution, it operates on a small spatial region of the feature map at a time, instead of the whole activation"

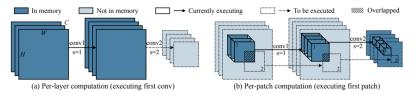


Figure 18: Patch-based vs Per-layer computation [Ji Lin, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

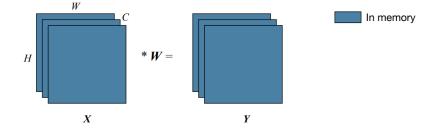


Figure 19: With a classical per-layer computation, the memory is filled with all the filters. [Ji Lin, 2021]

Peak Mem = 2 WHC

Chaigneau Yanis

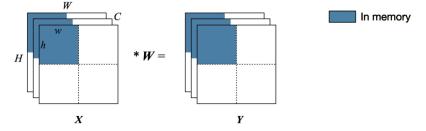


Figure 20: On the other hand, with a per-path computation, the peak memory is reduced as only a part of each filter is stored. [Ji Lin, 2021]

Peak Mem = 2 whC

Chaigneau Yanis

TinyML 00000000			Applications	Patch-Based Inference 0000●000	Conclusion 00000
Examp	le with 2 lay	/ers			

• a practical 2-layer example

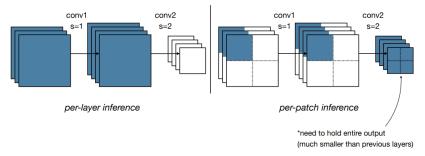


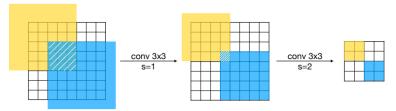
Figure 21: Comparison with 2 layers [Ji Lin, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000		Fit models to micro-controllers	Applications	Patch-Based Inference 00000●00	Conclusion	
Probler	n with over	apping				

· Using 2x2 patches



Spatial overlapping gets larger as receptive field grows!

Figure 22: Overlapping increases the overall computation (+10% while reducing the peak memory [Ji Lin, 2021]

Chaigneau Yanis

TinyML 00000000		Fit models to micro-controllers	Applications	Patch-Based Inference 000000●0	Conclusion 00000	
MCUN	etV2					

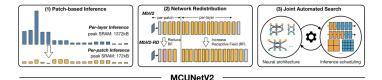


Figure 23: Final implementation of Patch-Based Learning [Ji Lin, 2021]

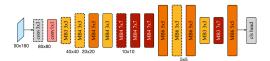


Figure 24: MCUNetV2 architecture [Ji Lin, 2021]

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000	Fit models to micro-controllers	Applications	Patch-Based Inference 0000000●	Conclusion	

Results

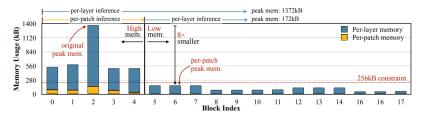
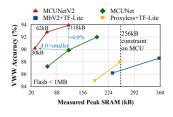


Figure 25: Memory usage results with patch-based inference [Ji Lin, 2021]



TinyML		Applications	Conclusion
			00000

TinyML

- 2 Micro-controllers
- 3 Fit models to micro-controllers
- Applications
- 5 Patch-Based Inference

- <ロ> <個> <ヨ> <ヨ> (ロ>)

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000		Applications	Conclusion 0●000
Conclu	sion		

- TinyML: very dynamic field
- Relatively easy to deploy a ML algorithm on a micro-controller with TensorFlow lite (a lot of documentation)
- A lot of applications (for environmental studies also)
- Main problem: peak-memory overflow → ideas like MCUNETV2 and patch-based inference

TinyML 00000000		Fit models to micro-controllers	Applications	Conclusion 00●00
Thanks	for listenin	g		

Thanks for listening ! Any questions ?

Chaigneau Yanis

GreenAI U.P.P.A

TinyML 00000000		Applications	Conclusion 000●●
Referer	nces I		

[Aakanksha Chowdhery, 2019] Aakanksha Chowdhery, Pete Warden, J. S. A. H. R. R. (2019). Visual wake words dataset.

[Fournarakis, 2021] Fournarakis, M. (2021).

A practical guide to neural network quantization.

[Han, 2021] Han, S. (2021).

Putting ai on a diet: Tinyml and efficient deep learning.

[Ji Lin, 2021] Ji Lin, Wei-Ming Chen, H. C. C. G. S. H. (2021). Mcunetv2: Memory-efficient patch-based inference for tiny deep learning.

TinyML 00000000		Fit models to micro-controllers	Applications	Patch-Based Inference	Conclusion 000●●
References II					

[NEUTON.AI, 2022] NEUTON.AI (2022).

A novel approach to building exceptionally tiny models without loss of accuracy.

[Pete Warden, 2019] Pete Warden, D. S. (2019).

Tinyml: Machine learning with tensorflow lite on arduino and ultra-low-power microcontrollers.

[Shim, 2021] Shim, K.-H. (2021).

Toward compact deep neural networks via energy-aware pruning.