
Binary Neural Network
Inference using tflite with larq

Fatou Kiné SOW
Green AI UPPA

May 31, 2022

1 / 21



Overview

1. Introduction

2. Motivation

3. BNN inference engine

4. Larq Compute Engine

5. Binary Convolution on GPU

2 / 21



Introduction

Figure 1: source (A comprehensive review of Binary Neural Network)

Reduce memory consumption and calculation complexity
3 / 21



Motivations

• No storage of parameters in binary format

• Impossible to use XNOR and POPCOUNT operators

4 / 21



Inference Engine

Several BNN inference frameworks are available in open source for optimal use of BNN :

• BMXNet and BMXNet2 (Binary Mix-Net)

• daDNN (Domain-Aware Deep Neural Network)

• FINN

• Larq, the fastest BNN framework in the state of the art compared to existing
inference frameworks

5 / 21



Larq Compute Engine
An open-source inference engine for BNN optimization.

Figure 2: source (A comprehensive review of Binary Neural Network)

6 / 21



Larq Compute Engine

How does LCE optimize inference?

1. MLIR (Multi-Level Intermediate Representation) to optimize graphs by merging some
operations

2. Storing weights in binary format

3. Binary matrix multiplication with a BGEMM kernel (Binary GEneral Matrix
Multiplication)

• Tiling to maximize the number of cache hits
• Vectorization (SIMD) to maximize the computational throughput

7 / 21



Graph optimization

The LCE converter performs these kinds of advanced optimizations automatically, without
changes to training code or instruction from the user.

8 / 21



Binary weight storage

9 / 21



Tiling

An optimization technique to maximize the number of cache hits.

• Compute output 4x4 matrix C
with two inputs 4x4 matrix A
and B

• 16 threads organized into a 2x2
block and 4 blocks in a grid

• Each thread of a block can see
what the three other threads of
the block have shared

Figure 3: source https://penny-xu.github.io/blog/tiled-
matrix-multiplication

10 / 21



Tiling

• Store the intermediate result

• Add it with the result of the
next multiplication

• Each thread would load its
corresponding result in the
output C element

Figure 4: source https://penny-xu.github.io/blog/tiled-
matrix-multiplication

Without tiling, each thread has 8 memory accesses whereas with a tiling, they each have
4 memory accesses.

11 / 21



Vectorization

Vectorization to maximize the computational throughput
ekek

Scalar Operation SIMD Operation.

12 / 21



Binary Matrix Multiplication

• xnor : eor < Rd >,< Rn >,< Rm >

• popcount : cnt < Rd >,< Rn >

• addp and uadalp to combine n-bit results into 2N-bit results.

13 / 21



BGEMM kernel

14 / 21



Gain with Larq Compute Engine

In terms of height × width × in channels × out channels, the convolutions are (A)
56×56×64×64; (B) 28×28×128×128; (C) 14×14×256×256; (D) 7×7×256×256.

15 / 21



Binary Convolution on GPU

Optimization of XNOR Convolution for Binary Convolutional Neural Networks on GPU
[Mete C. Kaya, Alperen Inci, Alptekin Temizel , July 2020]

• Implementation of binary convolutional network inference on GPU by focusing on
optimization of XNOR convolution

• Speed-up of up to 42.61× with a kernel size of 3×3 and XNOR-Net binary network
as reference method on Nvidia GTX1080TI GPU

Binary neural networks for speech recognition [Yan-min QIAN, Xu XIANG, 2019]
Fast implementation of binary matrix multiplication on CPU and GPU architectures with
a 5–7 times speedup compared with full precision floating-point matrix multiplication

16 / 21



Binary Convolution on GPU

Binary convolution on GPU has the following steps:

1. XNOR Convolution Bit operations
• Conversion of input data type to binary type
• XNOR bitwise logical operation on binary data with binary weights
• Summation of output binary bits where 0 values are considered as -1.
• Converting Binary to float data type.

2. XNOR Convolution Scaling Factor Computation
• Channel-wise summation of input data.
• Multiplication of matrix K with the scalar α value

3. Multiplication of float output of XNOR convolution with K and α values

17 / 21



Binary Convolution on GPU

18 / 21



Experimental Evaluation on GPU

Input Size Vanilla Conv. XNOR Conv. Speed-up

256 × 256 0.062 0.024 2.57×
512 × 512 0.186 0.069 2.69×
1024 × 1024 0.671 0.252 2.66×
2048 × 2048 2.641 0.986 2.68×

Table 1: Comparison of vanilla convolution with XNOR convolution on Nvidia GTX1080TI GPU (ms)

19 / 21



Experimental Evaluation on GPU

Input Size CPU GPU Speed-up

256 × 256 3.437 0.061 56.34×
512 × 512 10.623 0.186 57.11×
1024 × 1024 35.811 0.671 53.37×
2048 × 2048 132.714 2.641 50.25×

Table 2: Comparison of Intel i7700 CPU and Nvidia GTX1080TI GPU performance for vanilla convolution
(ms)

Input Size CPU GPU Speed-up

256 × 256 0.743 0.0237 31.35×
512 × 512 2.531 0.0692 36.57×
1024 × 1024 10.088 0.2519 40.04×
2048 × 2048 42.011 0.9859 42.61×

Table 3: Comparison of CPU and GPU performance for XNOR convolution (ms).
20 / 21



References

T.Bannink and A. Bakhtiari and A. Hillier and L. Geiger and T. de Bruin and L. Overweel (2020)

Larq Compute Engine: Design, Benchmark, and Deploy State-of-the-Art Binarized Neural Networks

Journal ArXiv abs/2011.09398.

Yuan, Chunyu and Agaian, Sos (2021)

A comprehensive review of Binary Neural Network

https://doi.org/10.48550/arXiv.2110.06804

Mete C. Kaya, Alperen Inci, Alptekin Temizel (July 2020)

Optimization of XNOR Convolution for Binary Convolutional Neural Networks on GPU

https://doi.org/10.48550/arXiv.2007.14178

Xiang, Xu and Qian, Yanmin and Yu, Kai (2017)

Binary Deep Neural Networks for Speech Recognition

doi 10.21437/Interspeech.2017-134

Penny Xu (2019)

Tiled Matrix Multiplication

https://penny-xu.github.io/blog/tiled-matrix-multiplication
21 / 21


	Introduction
	Motivation
	BNN inference engine
	Larq Compute Engine
	Binary Convolution on GPU

