Binary Neural Network

Inference using tflite with larq

Fatou Kiné SOW Green AI UPPA

May 31, 2022

- 1. Introduction
- 2. Motivation
- 3. BNN inference engine
- 4. Larq Compute Engine
- 5. Binary Convolution on GPU

Introduction

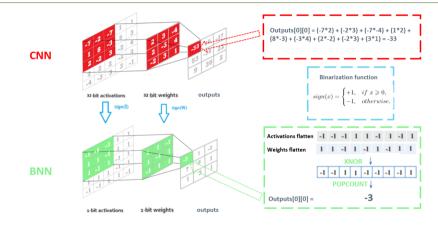


Figure 1: source (A comprehensive review of Binary Neural Network)

Reduce memory consumption and calculation complexity

Motivations

- No storage of parameters in binary format
- Impossible to use XNOR and POPCOUNT operators

Several BNN inference frameworks are available in open source for optimal use of BNN :

- BMXNet and BMXNet2 (Binary Mix-Net)
- daDNN (Domain-Aware Deep Neural Network)
- FINN
- Larq, the fastest BNN framework in the state of the art compared to existing inference frameworks

Larq Compute Engine

An open-source inference engine for BNN optimization.

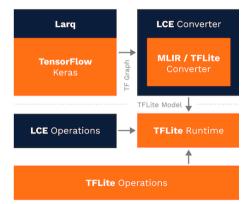
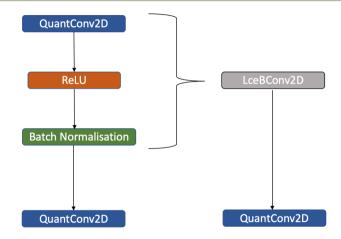


Figure 2: source (A comprehensive review of Binary Neural Network)

How does LCE optimize inference?

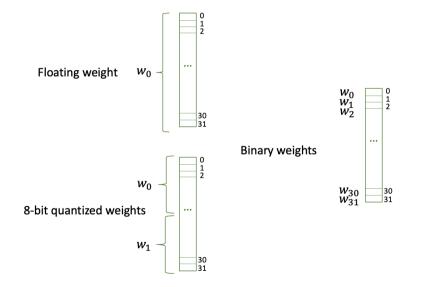
- 1. MLIR (Multi-Level Intermediate Representation) to optimize graphs by merging some operations
- 2. Storing weights in binary format
- 3. Binary matrix multiplication with a BGEMM kernel (Binary GEneral Matrix Multiplication)
 - Tiling to maximize the number of cache hits
 - Vectorization (SIMD) to maximize the computational throughput

Graph optimization



The LCE converter performs these kinds of advanced optimizations automatically, without changes to training code or instruction from the user.

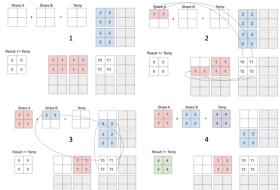
Binary weight storage



Tiling

An optimization technique to maximize the number of cache hits.

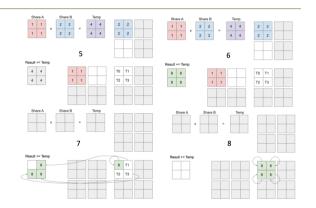
- Compute output 4x4 matrix C with two inputs 4x4 matrix A and B
- 16 threads organized into a 2x2 block and 4 blocks in a grid
- Each thread of a block can see what the three other threads of the block have shared



 $\label{eq:Figure 3: source https://penny-xu.github.io/blog/tiled-matrix-multiplication$

Tiling

- Store the intermediate result
- Add it with the result of the next multiplication
- Each thread would load its corresponding result in the output C element



 $\label{eq:Figure 4: source https://penny-xu.github.io/blog/tiled-matrix-multiplication$

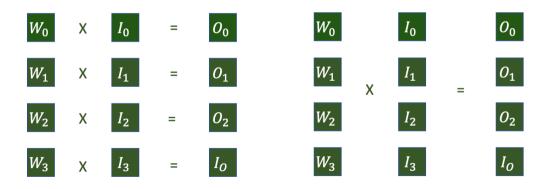
Without tiling, each thread has 8 memory accesses whereas with a tiling, they each have 4 memory accesses.

Vectorization

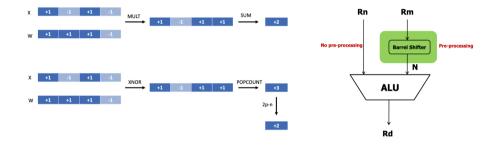
Vectorization to maximize the computational throughput

Scalar Operation

SIMD Operation.



Binary Matrix Multiplication



- xnor : *eor* < *Rd* >, < *Rn* >, < *Rm* >
- popcount : *cnt* < *Rd* >, < *Rn* >
- addp and uadalp to combine n-bit results into 2N-bit results.

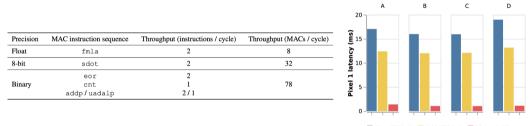
BGEMM kernel

33	<pre>#define XOR_POPCOUNT_ACCUM_LOAD_BLOCK_128</pre>	\
34	"eor v0.16b, %[a_0].16b, %[w_0].16b\n\t"	\
35	"eor v1.16b, %[a_1].16b, %[w_0].16b\n\t"	\
36	"eor v2.16b, %[a_2].16b, %[w_0].16b\n\t"	\
37	"eor v3.16b, %[a_3].16b, %[w_0].16b\n\t"	\
38	"eor v4.16b, %[a_0].16b, %[w_1].16b\n\t"	\
39	"eor v5.16b, %[a_1].16b, %[w_1].16b\n\t"	\
40	"eor v6.16b, %[a_2].16b, %[w_1].16b\n\t"	\
41	"eor v7.16b, %[a_3].16b, %[w_1].16b\n\t"	\
42	"eor v8.16b, %[a_0].16b, %[w_2].16b\n\t"	\
43	"eor v9.16b, %[a_1].16b, %[w_2].16b\n\t"	\
44	"eor v10.16b, %[a_2].16b, %[w_2].16b\n\t"	\
45	"eor v11.16b, %[a_3].16b, %[w_2].16b\n\t"	\
46	"eor v12.16b, %[a_0].16b, %[w_3].16b\n\t"	\
47	"eor v13.16b, %[a_1].16b, %[w_3].16b\n\t"	\
48	"eor v14.16b, %[a_2].16b, %[w_3].16b\n\t"	\
49	"eor v15.16b, %[a_3].16b, %[w_3].16b\n\t"	1

5	i0 "c	nt	v0.16b,	v0.16b\n\t"	\
5	i1 "c	nt	v1.16b,	v1.16b\n\t"	\
5	i2 "c	nt	v2.16b,	v2.16b\n\t"	\
5	i3 "c	nt	v3.16b,	v3.16b\n\t"	\
5	i4 "c	nt	v4.16b,	v4.16b\n\t"	\
5	i5 "c	nt	v5.16b,	v5.16b\n\t"	\
5	6 "c	nt	v6.16b,	v6.16b\n\t"	\
5	7 "c	nt	v7.16b,	v7.16b\n\t"	\
5	8 "c	nt	v8.16b,	v8.16b\n\t"	\
5	9 "c	nt	v9.16b,	v9.16b\n\t"	\
e	i0 "c	nt	v10.16b,	v10.16b\n\t"	\
e	i1 "c	nt	v11.16b,	v11.16b\n\t"	\
e	j2 "c	nt	v12.16b,	v12.16b\n\t"	\
e	i3 "c	nt	v13.16b,	v13.16b\n\t"	\
e	i4 "c	nt	v14.16b,	v14.16b\n\t"	\
e	5 "c	nt	v15.16b,	v15.16b\n\t"	\

66	"addp v0.16b, v0.16b, v4.16b∖n∖t"	\
67	"addp v1.16b, v1.16b, v5.16b\n\t"	\
68	"addp v2.16b, v2.16b, v6.16b\n\t"	\
69	"addp v3.16b, v3.16b, v7.16b\n\t"	\
70	"addp v8.16b, v8.16b, v12.16b\n\t"	\
71	"addp v9.16b, v9.16b, v13.16b\n\t"	\
72	"addp v10.16b, v10.16b, v14.16b\n\t"	\
73	"addp v11.16b, v11.16b, v15.16b\n\t"	\
74		`

Gain with Larq Compute Engine



📕 Float (TFLite) 📒 8-bit (TFLite) 📕 Binary (LCE)

In terms of height \times width \times in channels \times out channels, the convolutions are (A) $56 \times 56 \times 64 \times 64$; (B) $28 \times 28 \times 128 \times 128$; (C) $14 \times 14 \times 256 \times 256$; (D) $7 \times 7 \times 256 \times 256$.

Optimization of XNOR Convolution for Binary Convolutional Neural Networks on GPU [Mete C. Kaya, Alperen Inci, Alptekin Temizel , July 2020]

- Implementation of binary convolutional network inference on GPU by focusing on optimization of XNOR convolution
- Speed-up of up to 42.61 \times with a kernel size of 3 $\times3$ and XNOR-Net binary network as reference method on Nvidia GTX1080TI GPU

Binary neural networks for speech recognition [Yan-min QIAN, Xu XIANG, 2019] Fast implementation of binary matrix multiplication on CPU and GPU architectures with a 5–7 times speedup compared with full precision floating-point matrix multiplication Binary convolution on GPU has the following steps:

- 1. XNOR Convolution Bit operations
 - Conversion of input data type to binary type
 - XNOR bitwise logical operation on binary data with binary weights
 - Summation of output binary bits where 0 values are considered as -1.
 - Converting Binary to float data type.
- 2. XNOR Convolution Scaling Factor Computation
 - Channel-wise summation of input data.
 - Multiplication of matrix K with the scalar α value
- 3. Multiplication of float output of XNOR convolution with K and α values

Algorithm 1 Input Image to Binary Image			
1: for $j < IMAGE_HEIGHT$ do			
2: for <i>i</i> < <i>IMAGE_WIDTH</i> do			
3: $register_image = input_image[j][i] >> Shift$			
4: $Shift + = 1$			
5: if $i \mod register_x == 7$ then			
6: $i = i - (kernel_size_x - 1)/2$			
7: end if			
8: end for			
9: if $j \mod register_y == 7$ then			
10: $j = j - (kernel_size_y - 1)/2$			
11: end if			
12: end for			

Algorithm 2 XNOR Convolution
1: Mask = weight_matrix_of_ones
2: <i>iteration_row</i> = $register_size_x - kernel_size_x + 1$
3: <i>iteration_col</i> = <i>register_size</i> _y - <i>kernel_size</i> _y + 1
4: for $j < iteration_row$ do
5: for $i < iteration_col$ do
6: $register_image = (input_image[j][i] >>$
$Shift) \oplus Weight_Kernel$
7: $register_image = register_image \land Mask$
8: $Shift + = 1$
9: end for
10: end for

Experimental Evaluation on GPU

Input Size	Vanilla Conv.	XNOR Conv.	Speed-up
256×256	0.062	0.024	2.57×
512 × 512	0.186	0.069	2.69×
1024×1024	0.671	0.252	2.66×
2048 × 2048	2.641	0.986	2.68×

Table 1: Comparison of vanilla convolution with XNOR convolution on Nvidia GTX1080TI GPU (ms)

Experimental Evaluation on GPU

Input Size	CPU	GPU	Speed-up
256 × 256	3.437	0.061	56.34×
512 × 512	10.623	0.186	57.11×
1024 imes 1024	35.811	0.671	53.37×
2048 × 2048	132.714	2.641	50.25×

Table 2: Comparison of Intel i7700 CPU and Nvidia GTX1080TI GPU performance for vanilla convolution (ms)

Input Size	CPU	GPU	Speed-up
256 × 256	0.743	0.0237	31.35×
512 × 512	2.531	0.0692	36.57×
1024×1024	10.088	0.2519	40.04×
2048 × 2048	42.011	0.9859	42.61×

Table 3: Comparison of CPU and GPU performance for XNOR convolution (ms).

References

- T.Bannink and A. Bakhtiari and A. Hillier and L. Geiger and T. de Bruin and L. Overweel (2020) Larq Compute Engine: Design, Benchmark, and Deploy State-of-the-Art Binarized Neural Networks Journal ArXiv abs/2011.09398.
- Yuan, Chunyu and Agaian, Sos (2021) A comprehensive review of Binary Neural Network https://doi.org/10.48550/arXiv.2110.06804
- Mete C. Kaya, Alperen Inci, Alptekin Temizel (July 2020) Optimization of XNOR Convolution for Binary Convolutional Neural Networks on GPU https://doi.org/10.48550/arXiv.2007.14178
- Xiang, Xu and Qian, Yanmin and Yu, Kai (2017) Binary Deep Neural Networks for Speech Recognition doi 10.21437/Interspeech.2017-134
 - Penny Xu (2019) Tiled Matrix Multiplication https://penny-xu.github.io/blog/tiled-matrix-multiplication