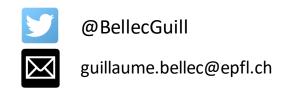
Brain inspirations for power efficient Artificial intelligence

November 2021

Guillaume Bellec

Post-doc in the lab of Computational Neuroscience, EPFL



Part 1. Long-short term memory and back-prop through time in spiking neural networks (TU GRAZ)

F. Scherr*

D. Salaj

E. Hajek

A. Subramoney

[1] Long short-term memory and learning-to-learn in networks of spiking neurons (NeurIPS 2018)
Bellec*, Salaj*, Subramoney*, Legenstein, Maass

Part 2. Eligibility propagation: credit assignment in time with eligibility traces (TU GRAZ)

[2] Bellec*, Scherr*, Subramoney, Hajek, Salaj, Legenstein, & Maass (Nature comm. 2020)

A solution to the learning dilemma for recurrent networks of spiking neurons

R. Legenstein

W. Maass

Part 3. Local plasticity rules can learn deep representations using self-supervised contrastive predictions (EPFL)

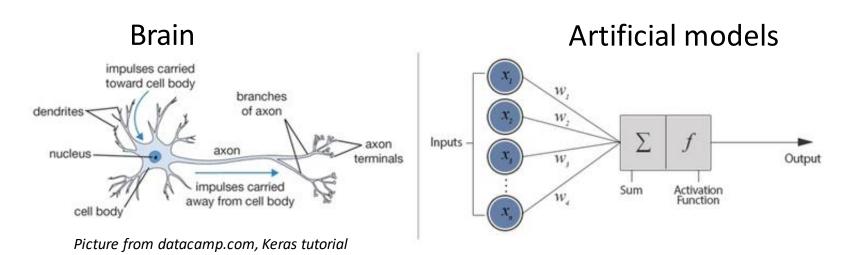
[3] Local plasticity rules can learn deep representations using self-supervised contrastive predictions (NeurIPS 2021)

Bernd Illing, Jean Ventura, Guillaume Bellec*, Wulfram Gerstner*

B. Illing

W. Gerstner

A simple spiking neuron model

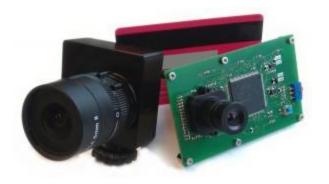


The **Leaky Integrate and Fire** (LIF) is a simple biophysical model of a neuron that captures the spiking dynamics of neurons in the brain.

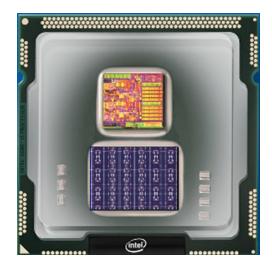
Spikes
$$z_j^t$$
 Hidden h_j^t 0 — threshold A_j^t or $v_{\rm th}$ — membrane v_j^t 0 — membrane v_j^t 0 — $v_{\rm th}$ — v_j^{t+1} 0 — v_j^{t+1} 0 — v_j^t v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t 0 — v_j^t v_j^t 0 — v_j^t 0 —

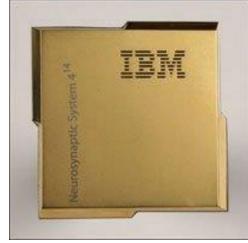
Neuromorphic hardware

Neuromorphicsensor

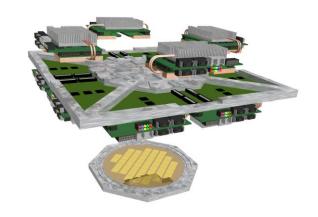


Digital Neuromorphic hardware



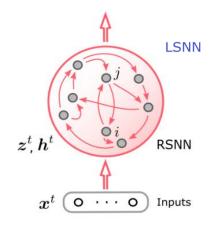


Analog neuromorphic hardware



Recurrent spiking neural networks (RSNN)

Adaptive Leaky integrate and fire (ALIF)

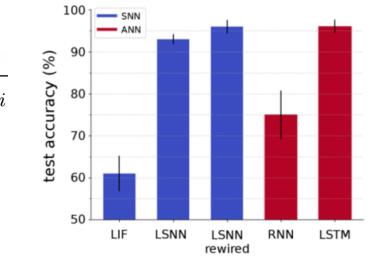


The learning performance is quantified for the loss function $\,E\,$

Temporal credit assignment is done with Back prop through time (BPTT) for RSNNs [1,2] which computes the gradient:

LSNN: Long-short term memory **S**piking **N**eural **N**etwork, a recurrent network of adaptive LIF (A.LIF) neurons

[1] Long short-term memory and learning-to-learn in networks of spiking neurons (NeurIPS 2018) Bellec*, Salaj*, Subramoney*, Legenstein, Maass



[2] Gradient Descent for Spiking Neural Networks (NeurIPS 2018) Huh, Sejnowski

Deep rewiring

10 end

[1] Deep Rewiring: Training very sparse deep networks (ICLR 2018) Bellec, Kappel, Maass, Legenstein

[2] Liu, C., Bellec, G., Vogginger, B., Kappel, D., Partzsch, J., Neumärker, F., ... & Mayr, C. G. (2018). Memory-efficient deep learning on a SpiNNaker 2 prototype. *Frontiers in neuroscience*, *12*, 840.

```
for i in [1, N_{iterations}] do

for all active connections k (\theta_k \geq 0) do

\begin{vmatrix} \theta_k \leftarrow \theta_k - \eta \frac{\partial}{\partial \theta_k} E_{\mathbf{X},\mathbf{Y}^*}(\boldsymbol{\theta}) - \eta \alpha + \sqrt{2\eta T} \, \nu_k; \\ \mathbf{if} \, \theta_k < 0 \text{ then set connection } k \text{ dormant}; \end{vmatrix}

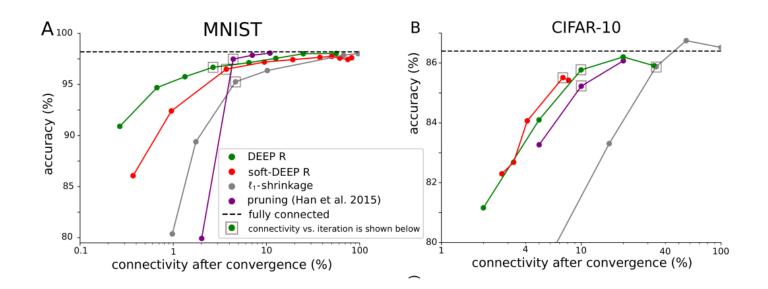
end

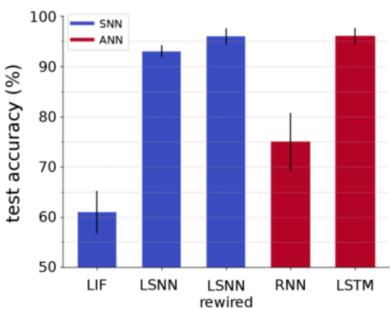
while number of active connections lower than K do

select a dormant connection k' with uniform probability and activate it;

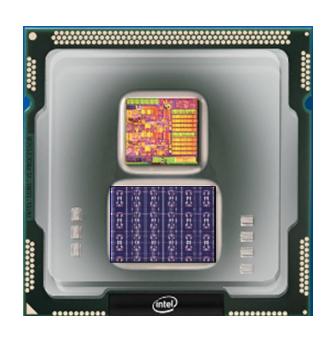
\theta_{k'} \leftarrow 0

end
```



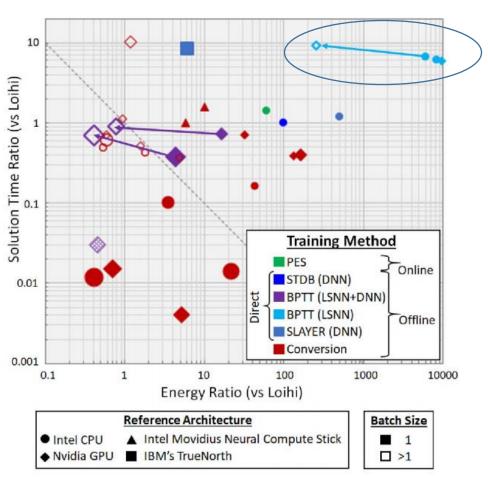


Porting LSNN to neuromorphic hardware



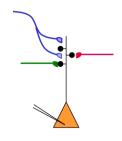
Intel Loihi (Digital)

Heidelberg Brain Scales (mixed digital and analog)
Spinnaker (Digital)



Davies, Mike, et al. "Advancing neuromorphic computing with Loihi: A survey of results and outlook." *Proceedings of the IEEE* 109.5 (2021): 911-934.

Part2. How does the brain learn? Observed mechanism of synaptic plasticity



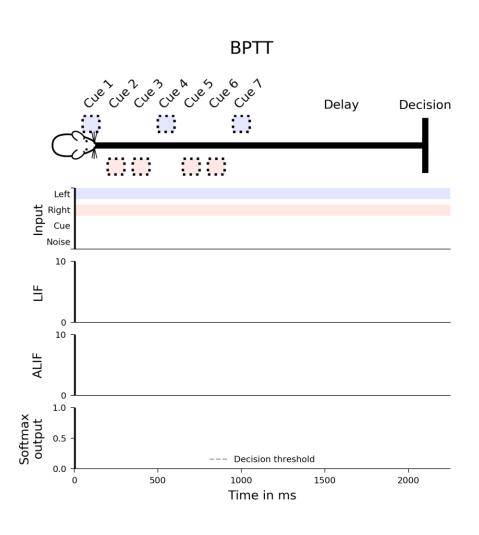
Review

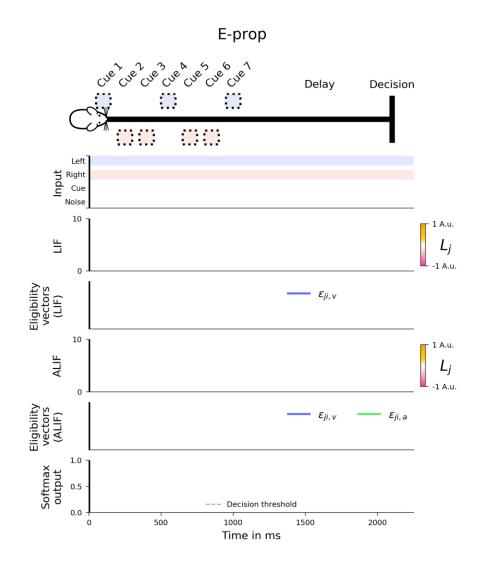
W Gerstner, M Lehmann, V Liakoni, D Corneil, J Brea 2018

• We define as **eligibility trace**, a synaptic process that retain information about the history of local activity to make a potential change of synaptic efficacy

$$e_{ji}^t = f(z_i^{t-\Delta t} \cdots z_i^t, z_j^{t-\Delta t} \cdots z_j^t)$$

Credit assignment problem in recurrent dynamics



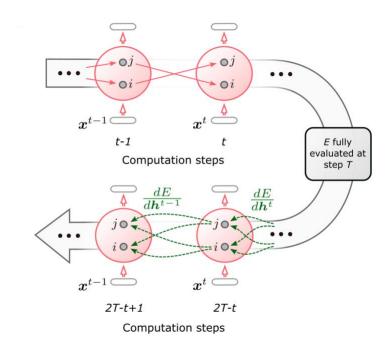


Eligibility propagation (e-prop)

How to compute gradients in recurrent neural networks: $\frac{dE}{dW_{ji}}$ =?

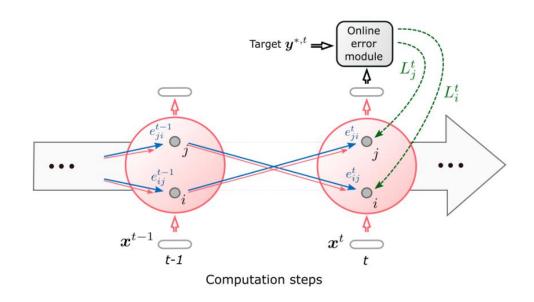
BPTT

Back-propragation through time



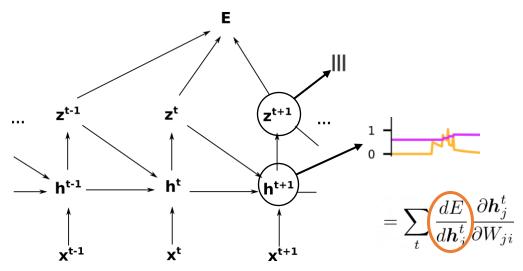
E-prop

Eligibility propagation

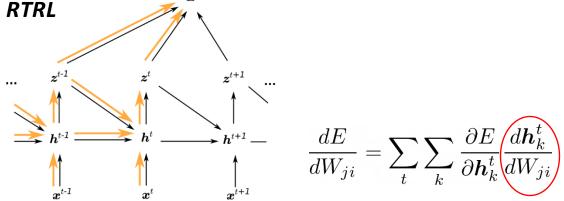


Three factorizations of the loss gradient:

Many ways of applying the chain rule

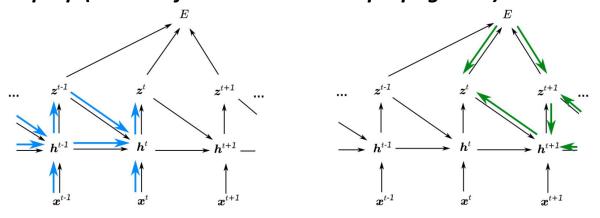


[1] Werbos (1990). Backpropagation through time: what it does and how to do it propagation requires $O(n^2)$ multiplication and $O(nT + n^2)$ in memory



[2] Williams & Zipser (1989). A learning algorithm for continually running fully RNNs

E-prop (a mixed forward-backward propagation)



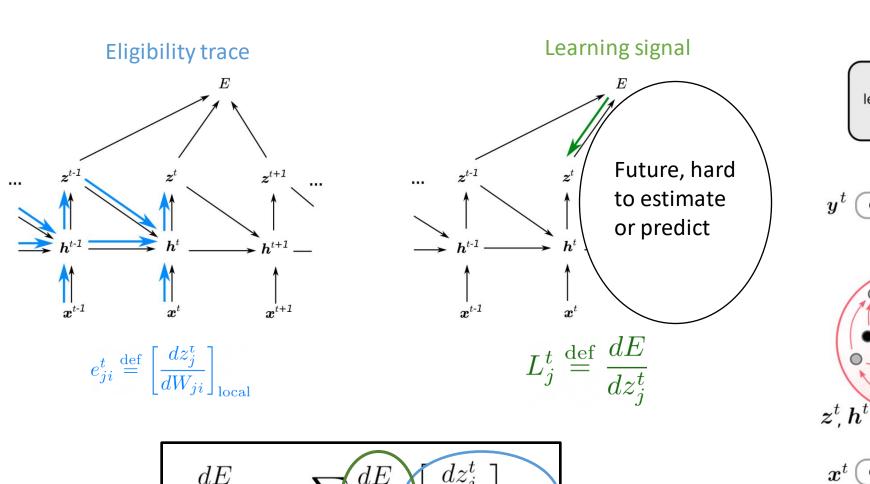
[3] Bellec*, Scherr*, Subramoney, Hajek, Salaj, Legenstein, & Maass (2020) A solution to the learning dilemma for recurrent networks of spiking neurons

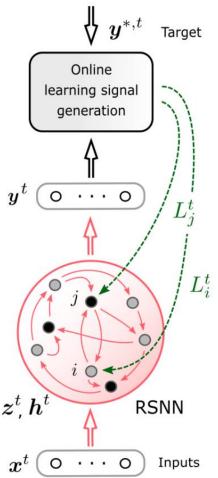
Eligibility traces require $O(n^2)$ mult. $O(n^2)$ in memory The learning signal can be approximated $0(nT + n2) \rightarrow 0(n2)$

$$\frac{dE}{dW_{ji}} = \sum_{t} \left(\frac{dE}{dz_{j}^{t}} \cdot \left[\frac{dz_{j}^{t}}{dW_{ji}} \right]_{local} \right)$$

propagation requires O(n⁴) multiplication and O(n³) in memory

E-prop: a **neurocentric** factorization of RNN gradients (each term should be accessible locally)





E-prop empirical success in simulations

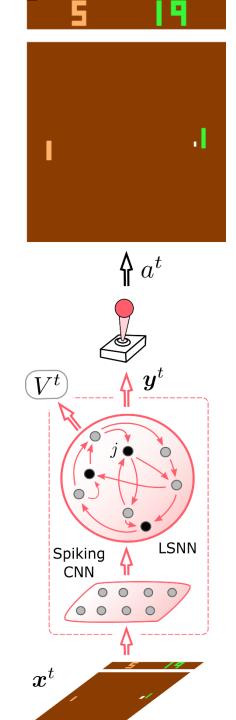
An approximation of the learning signal is required to do the computation fully locally.

E-prop (with this approximation) looses only a tiny bit of performance compared to BPTT on:

- speech processing [1] (see right),
- reinforcement learning [1] (ATARI games)
- natural language processing with Snap-1 [2].

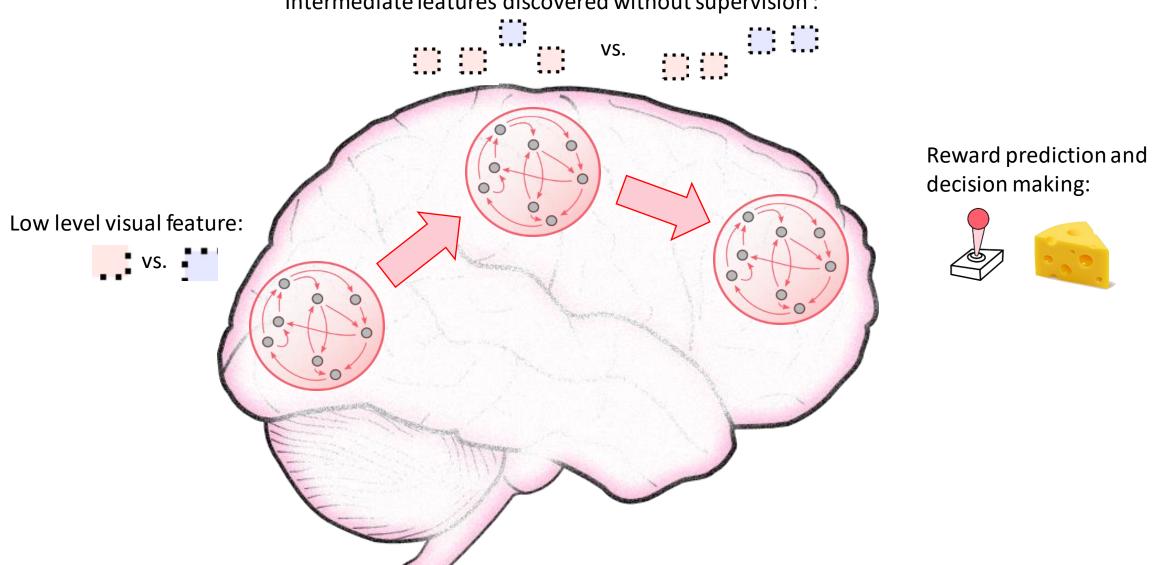
Similar approximation for RNNs were discussed in [2,3,4], it 's hard to find a better **online approximation** of the loss gradient.

[1] Bellec*, Scherr*, Subramoney, Hajek, Salaj, Legenstein, & Maass (Nature comm. 2020)
A solution to the learning dilemma for recurrent networks of spiking neurons
[2] Menick, Elsen, Evci, Osindero, Simonyan, & Graves (ICLR 2021)
A Practical Sparse Approximation for Real Time Recurrent Learning
[3] James Murray (eLife 2019)
Local online learning in recurrent networks with random feedback
[4] Long short-term memory (1997)
S Hochreiter, J Schmidhuber

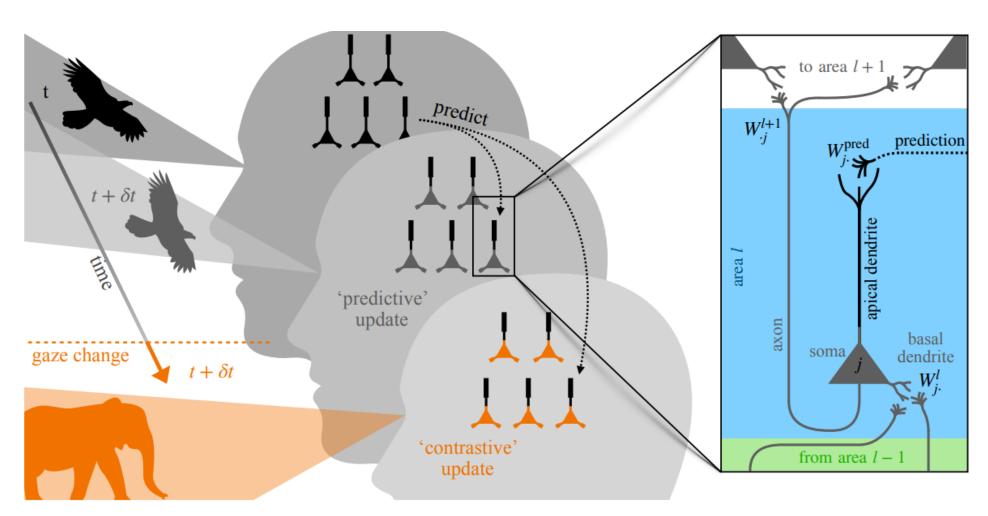


Part 3. What is the loss function E? Is there a general principle for learning representations

Intermediate features discovered without supervision:

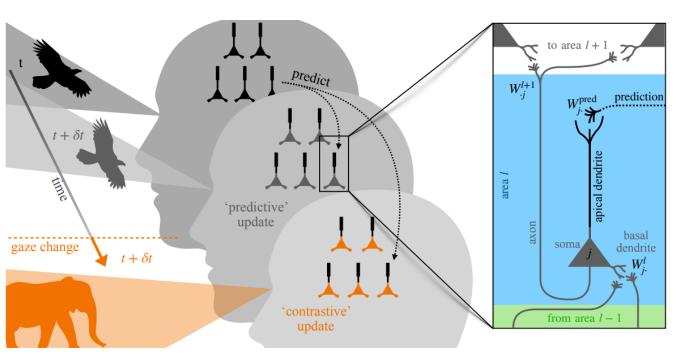


Predictions as a plausible principle for representation learning



Local plasticity rules can learn deep representations using self-supervised contrastive predictions Illing, Ventura, Bellec*, Gerstner* (NeurIPS 2021)

Plausible plasticity rule with dendritic predictions

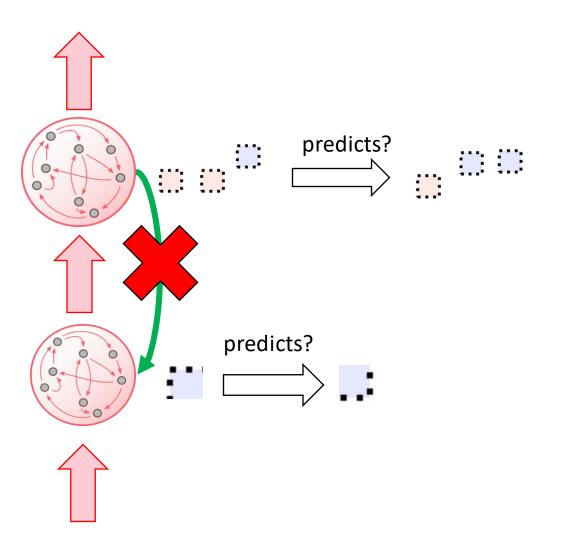


- Predictive coding: the cortex seems to constantly predict its own future activity
- Dentritic signals seem to have a **predictive** nature
- Plasticity pairing protocols involve pre, post-synpatic activity and a 3rd factor

Local plasticity rules can learn deep representations using self-supervised contrastive predictions Illing, Ventura, Bellec*, Gerstner* (very positive reviews, very likely acceptance at NeurIPS 2021)

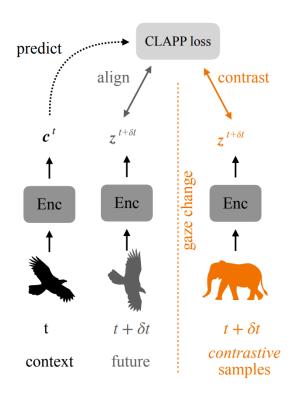
$$\Delta W_{ji} \propto \underbrace{\text{modulators}}_{\text{broadcast factors}} \cdot \underbrace{(\boldsymbol{W}^{\text{pred}} \boldsymbol{c}^{t_1})_j}_{\text{dentritic prediction}} \cdot \underbrace{\text{post}_j^{t_2} \cdot \text{pre}_i^{t_2}}_{\text{local-activity}}$$

CLAPP: Contrastive, Local And Predictive Plasticity



- Each layer minimizes a loss function to **predict its own future**
- Only requires the activity of other neurons is the (same) layer
- no other feedback or dense learning signal necessary
- [1] Representation Learning with Contrastive Predictive Coding Aaron van den Oord, Yazhe Li, Oriol Vinyals
- [2] Putting An End to End-to-End: Gradient-Isolated Learning of Representations Sindy Löwe, Peter O'Connor, Bastiaan S. Veeling

CLAPP: Constrastive, Local and Predictive Plasticity rule



The loss function of CLAPP formalizes the binary classification:

Fixation vs. **Saccade** (gaze change towards the elephant)

If fixation,
$$u_t^{t+\delta t} = oldsymbol{z}^{t+\delta t} oldsymbol{W}^{ ext{pred}} oldsymbol{z}^t$$
 should be higher than 1

If saccade, $u_t^{t+\delta t}$ should be lower than -1

$$\mathcal{L}^t_{CLAPP} = \max \left(0, 1 - y^t \cdot u^{t+\delta t}_t\right) \quad \text{with} \quad \left\{ \begin{array}{l} y^t = +1 & \text{for fixation} \\ y^t = -1 & \text{for saccade} \end{array} \right.$$

$$y^t = -1$$
 for saccade $\mathcal{L}^{t, ext{pos}}_{CLAPP}(u^{t+\delta t}_t)$ $\mathcal{L}^{t, ext{neg}}_{CLAPP}(u^{t'}_t)$

$$\frac{\partial \mathcal{L}_{CLAPP}^{t}}{\partial W_{ii}} = \pm (\boldsymbol{W}^{\text{pred}} \boldsymbol{z}^{t})_{j} \rho'(a_{j}^{t+\delta t}) x_{i}^{t+\delta t}$$

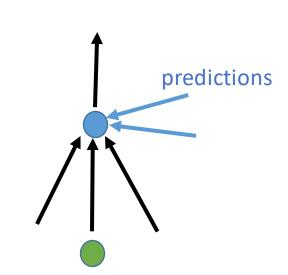
CLAPP as a replacement for back-prop: $z = \rho(a)$

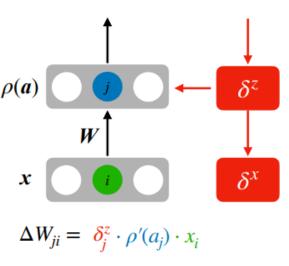
If we consider a neuron such that ${m z}^t=
ho({m a}^t)$ with ${m a}^t={m W}{m x}^t$ We find a weight update gated by ${m \gamma}^{ au}$ (it is 0 when the Hinge loss is saturated) (for instance $au=t+\delta t$)

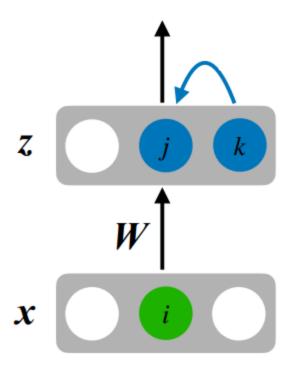
$$\Delta W_{ji}^{\tau} = \underbrace{\gamma^{\tau} \left(\mathbf{W}^{\mathrm{pred}} \mathbf{z}^{t} \right)_{j}}_{\mathrm{global \ predictions}} \underbrace{\rho'(a_{j}^{\tau})}_{\mathrm{post}} \underbrace{x_{i}^{\tau}}_{\mathrm{pre}}$$
 To align z_{j}^{τ} better with the prediction

$$\Delta W_{ji}^{\tau} = \gamma^{\tau} \left(\boldsymbol{W}^{\mathrm{pred}, \top} \boldsymbol{z}^{\tau} \right)_{j} \rho'(a_{j}^{t}) x_{i}^{t}$$

To improve the prediction made by z_j^t





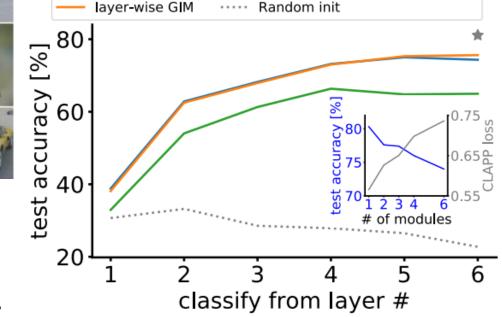


CLAPP trains deep CNNs efficiently even-though no information is transmitted backward

STL-10 unsupervised benchmark:

500 training images

100,000 unlabelled images



Greedy supervised

To evaluate the "richness" of the representation:

After learning with unlabelled data we train a linear classifier on a usual supervised object recognition task.

Performance increases with depth (not trivial).

Outperforms supervised learning rule by 9%.

No apparent decrease of performance compared to layer wise CPC

Porting E-prop and CLAPP to neuromorphic hardware

Stay tuned...

Intel Loihi (Digital)

Heidelberg Brain Scales (mixed digital and analog)

Spinnaker (Digital)

Part 1. and 2. TU GRAZ

D. Salaj

E. Hajek

A. Subramoney

R. Legenstein

W. Maass

[1] Bellec*, Scherr*, Subramoney, Hajek, Salaj, Legenstein, & Maass (Nature comm. 2020) A solution to the learning dilemma for recurrent networks of spiking neurons

Part 3. EPFL

B. Illing

W. Gerstner

[2] Towards truly local gradients with CLAPP: Contrastive, Local And Predictive Plasticity (arxiv 2020) Bernd Illing, Wulfram Gerstner, Guillaume Bellec