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Glossary

ASR Automatic Speech Recognition
DA Domain Adaptation

GAN Generative Artificial Network

TTS Text To Speech

\/C Voice Conversion
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Data Adaptation in general 0 Ada ion for ASR
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Domain Adaptation is a sub-field of transfer learning. We aim at
learning from a source data distribution a model on different target
data distribution.

Same Source and Target
Marginal Discributions on X

"Usual” Transductive
Learning Setting | +| Transfer Learning | | Transfer Learning | | Transfer Learning |*
N Transfer Learning '
Domain Adaptation [Red ko et aI 2020]
-

Domain Adaptation position

It can be supervised, semi-supervised and unsupervised
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Data Adaptation in general
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Techniques for Domain Adaptation

© Divergence based DA
¢ Adversarial based DA

© Reconstruction based DA
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Data Adaptation in general
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Comparison with classical classifier
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Figure 3: Goal for Domain Adaptation
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Data Adaptation in general
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Divergence based DA

Common divergence based criterion :
Contrastive Domain Discrepancy, Correlation Alignment, Maximum
Mean Discrepancy (MMD), Wasserstein etc.
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Figure 4. Double loss for divergence : classification and divergence-based
loss
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Data Adaptation in general
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Adversarial based DA
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Figure 5: Training for source and target
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Data Adaptation in general
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Reconstruction based DA
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Figure 6. Train and testing
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Domain Adaptation for ASR
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Simple Baseline with Synthetic Data

Improve ASR with only text using TTS [Joshi and Singh, 2022]
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Figure 7. Using synthetic data for dataset
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Domain Adaptation for AS
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Model Test WER ~ Test WER + N-Best WER

LM Rescoring
LAS-Gen 25.31 22.18 13.71
LAS-Dense 16.25 15.55 7.6
LAS-Decoder 13.65 13.36 5.82
CTC-Gen 31.84 25.58 13.83
CTC-Dense 20.32 17.66 8.24

Table 1: Word Error Rate(WER) for different model variations using Voice Search Domain. The N-Best WER
indicates the best WER in the top N=10 beams.

Model Test WER  Test WER + N-Best WER

LM Rescoring
LAS-Gen 39.42 31.62 25.35
LAS-Dense 22.57 16.38 11.01
LAS-Decoder 18.96 12.54 8.17
CTC-Gen 31.08 22.81 19.74
CTC-Dense 2243 15.42 12.15

Table 2: Word Error Rate(WER) for different model variations using Address Domain. The N-Best WER indicates
the best WER in the top N=10 beams.

Improved results
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Domain Adaptation for ASR
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Punjabi children recognition
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Figure 1. Block Diagram of the ASR system implemented by Augmentation of Original Children Specch and Pre
synthesized Speech

Figure 9. Synthetic data using Tacotron synthetis[Hasija et al., 2021]
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Domain Adaptation for ASR
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Voice Conversion
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Figure 1: Proposed schemes for improving children’s ASR ex-
ploiting voice-conversion-based out-of-domain data augmenta-
tion.

Further, strided convolutional neural networks (CNN) are used

Figure 10: Voice conversion (VC) is a technique for transforming the
non/para-linguistic information of given speech while preserving the
linguistic information[Shahnawazuddin et al., 2020]
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Application to our case : CycleGAN-VC2
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Goal with Prof en Poche

VoiX d’enfants -> voix d’adultes pour inférence sur modéle cogui adulte

voix d*adultes -> voix d'enfants pour augmentation de données pour I'entrainement
du modéle enfant

Figure 11: Two scenarios to recognize children voice in mathia application
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Application to our case : CycleGAN-VC2
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CycleGan-VC
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Fig. 2. Network architectures of generator and discriminator. In input or output layer, h, w, and < represent height, width, and
number of channels, respectively. In each convolutional layer, k, ¢, and s denote kernel size, number of channels, and stride
size, respectively. Since generator is fully convolutional [42], it can take input of arbitrary length T'.

Figure 120 A CycleGAN learns forward and inverse mappings
simultaneously using adversarial and cycle-consistency
losses.[Kaneko and Kameoka, 2017]
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Application to our case :

: CycleGAN-VC2
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CycleGan-VC2
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Figure 13: New architecture[Kaneko et al., 2019]
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Application to our case : CycleGAN-VC2
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