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AI and Compute
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Carbon footprint of AI

“The climate impact of digital technology is bigger than aviation.”

AI vs digital,
Compute vs LCA.

3h of training AI is equiv. to one month of battery charges of a laptop

Training GPT3 would cost around 200,000kWh [2]
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Deep Learning Zoology
Low bitwidth approaches

Originally from [7] - BinaryConnect
Weights and I/O in [15, 5] - XNOR-nets ++
Quantization in [24, 20]

Pruning approaches
Originally after training in [14] (see also [23]),
At initalization in [9],
During the training and using sparsity in [3, 21],
Related with EDropout and architecture search - [22, 8, 17].

Bio-inspired energy efficiency
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Power meters and Hardwares
Power measurements

[4, 10, 2] uses RAPL and nvidia-smi specific performance counters,
[16, 10] proposes a layer by layer energy measurements comparing
Mobilenets [18] to standard Inception-V3 on a ARM Cortex-A57,
[6, 16] proposes direct power meter measurements,
[12, 11] quantifies the carbon emission of compute here.

Hardwares
CPU to GPU,
CNNs accelerator on FPGA or ASIC, see [19, 1],
GPU to nano-computers (Jetson Nano / Xavier).
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Our team approach

Website
AIPowerMeter
Github

Classical DL Our approach
minθ `(θ) minρ {Eθ∼ρ`(θ) +D(ρ, π)}
SGD MCMC

differentiable, global and continuous layerwise discrete hybrid
statistical learning sequential learning

signal-processing based math / stats / game theory based
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Mathematical context
General framework

a sequence of deterministic (or i.i.d.) inputs z1, . . . , zT ∈ Z,
a set of weak learners g ∈ G,
a loss function `(·, ·) : G × Z → R+.

Goal Find a sequence of distributions such that:

T∑
t=1

Eg ′∼ρ̃t `(g ′, zt)− inf
g∈G

{ T∑
t=1

`(g , zt) + λpen(g)
}

is minimum, where pen(g) measure the ’complexity’ of the decision
g ∈ G.
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Supervised framework for CNNs
Framework

z = (x , y), x ∈ X input space of images, time series, network,
G := {gw : X → Y,w ∈ W}, where w are the weights of a given
standard or XNOR-nets architecture. For XNOR-nets convolutions are
approximated by bitwise operations:

xk =
(
wbin

k
⊕

sign ◦ BNorm (xk−1)
)⊙

wscale
k ,

the cross-entropy loss function `(ŷ , y).
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Sparsity regret bound
XNOR-Nets case

Theorem (L. Chee and Gay, 2021)
Considering inputs {(xt , yt), t = 1, . . . ,T}, the decision space G, and
cross-entropy loss, there exists a sequence of distributions (ρ̃t)T

t=1 on G
such that:

T∑
t=1

Eg ′∼ρ̃t `(yt , g ′(xt)) ≤ inf
w∈WXNOR

{ T∑
t=1

`(yt , gw(xt)) + pen(gw)
}

+ ∆T ,

where ∆T > 0 is defined in [13] and pen(gw) measure the complexity of
the network as follows:

pen(gw) = 4
∑

w∈{wreal,wscale}
‖w‖0 log

(
1 + ‖w‖1

τ‖w‖0

)
+ pbin log 2
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Accept-Reject algorithm
Pseudo-code

init. λ > 0, sparsity prior π, k = 1.
1 Draw ŵ1 from π.
2 Repeat for k = 1, . . . ,K :

Generate a proposal w̃ ∼ p̃ŵk ,σ, where p̃ has mean ŵk .
Compute:

ρj(w̃, ŵk) = exp {−λ`(w̃,Bj)}π(w̃)
exp {−λ`(ŵk ,Bj)}π(ŵk) .

Update

ŵk+1 =
{

w̃ with proba ρj(w̃, ŵk)
ŵk otherwise.
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Weight distributions
SGD vs MCMC
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Robustness to pruning
SGD vs MCMC
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Future works

Structural sparsity and more specific priors,
Asynchronous and decentralized algorithms,
Forward accelerations,
Extensions to non-diff losses and other divergences, link with MTS
problem,
Workshop page see - the dedicated page -
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