
Bayesian Deep Active Learning
Computer vision and NLP

Sébastien Loustau

10/04/2023



Outlines

1 Bayesian Deep Learning

2 Active Learning for Computer Vision

3 Active Learning for NLP



Outlines

1 Bayesian Deep Learning

2 Active Learning for Computer Vision

3 Active Learning for NLP



Convex optimization

Gradient descent can be written as:

xt+1 := arg min
x∈X

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

Mirror descent solves:

xt+1 := arg min
x∈P
{η∇f (xt) · x + BΦ(x , xt)} .

Main idea change the search space X to a particular set of
probability distribution P.



Convex optimization

Gradient descent can be written as:

xt+1 := arg min
x∈X

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

Mirror descent solves:

xt+1 := arg min
x∈P
{η∇f (xt) · x + BΦ(x , xt)} .

Main idea change the search space X to a particular set of
probability distribution P.



Convex optimization

Gradient descent can be written as:

xt+1 := arg min
x∈X

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

Mirror descent solves:

xt+1 := arg min
x∈P
{η∇f (xt) · x + BΦ(x , xt)} .

Main idea change the search space X to a particular set of
probability distribution P.



Bayesian Learning

Given a dataset {(Xi ,Yi ), i = 1, . . . , n}, a set of candidate models
{gθ, θ ∈ Θ} and a loss function `(·, ·):
Frequentist paradigm

min
θ∈Θ

{ n∑
i=1

`(Yi , gθ(Xi )) + α pen(θ),
}

where pen(·) avoids overfitting.
Bayesian paradigm

min
ρ∈P(Θ)

{
Eθ∼ρ

n∑
i=1

`(Yi , gθ(Xi )) + αK(ρ, π)
}
,

where π is a prior distribution and K(·, ·) is the KL divergence.



The Bayesian Learning Rule [6]

Approximate the solution by solving :

min
q∈Q

{
Eθ∼q

n∑
i=1

`(Yi , gθ(Xi )) + αK(q, π)
}
,

where Q is a particular family of distribution.

For exp-families Q = {q(θ) = exp (〈λ,T (θ)〉}, we have the
natural gradient VI algorithm available:

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]
,

where ¯̀(·) =
∑n

i=1 `(Yi , f.(Xi )) and µ = Eθ∼qT (θ).

We can recover standard algorithm:
• Q = N (m, Ip) GD-like algorithm,
• Q = N (m,Σ2) Newton-like algorithm,
• Q = B(p) STE estimator.



The Bayesian Learning Rule [6]

Approximate the solution by solving :

min
q∈Q

{
Eθ∼q

n∑
i=1

`(Yi , gθ(Xi )) + αK(q, π)
}
,

where Q is a particular family of distribution.

For exp-families Q = {q(θ) = exp (〈λ,T (θ)〉}, we have the
natural gradient VI algorithm available:

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]
,

where ¯̀(·) =
∑n

i=1 `(Yi , f.(Xi )) and µ = Eθ∼qT (θ).

We can recover standard algorithm:
• Q = N (m, Ip) GD-like algorithm,
• Q = N (m,Σ2) Newton-like algorithm,
• Q = B(p) STE estimator.



The Bayesian Learning Rule [6]

Approximate the solution by solving :

min
q∈Q

{
Eθ∼q

n∑
i=1

`(Yi , gθ(Xi )) + αK(q, π)
}
,

where Q is a particular family of distribution.

For exp-families Q = {q(θ) = exp (〈λ,T (θ)〉}, we have the
natural gradient VI algorithm available:

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]
,

where ¯̀(·) =
∑n

i=1 `(Yi , f.(Xi )) and µ = Eθ∼qT (θ).

We can recover standard algorithm:
• Q = N (m, Ip) GD-like algorithm,
• Q = N (m,Σ2) Newton-like algorithm,
• Q = B(p) STE estimator.



Sketch of proof : GD (order 1)

q(θ) = N (m, Ip)
λ = m
µ = m
H(q) = log 2π

2

θt+1 = θt − ρ∇θ ¯̀(θt)
Smoothing Eq ¯̀(θ) ≈ ¯̀(m)
mt+1 = mt − ρ∇mEq ¯̀(θ)

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]



Sketch of proof : GD (order 1)

q(θ) = N (m, Ip)
λ = m
µ = m
H(q) = log 2π

2

θt+1 = θt − ρ∇θ ¯̀(θt)

Smoothing Eq ¯̀(θ) ≈ ¯̀(m)
mt+1 = mt − ρ∇mEq ¯̀(θ)

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]



Sketch of proof : GD (order 1)

q(θ) = N (m, Ip)
λ = m
µ = m
H(q) = log 2π

2

θt+1 = θt − ρ∇θ ¯̀(θt)

Smoothing Eq ¯̀(θ) ≈ ¯̀(m)

mt+1 = mt − ρ∇mEq ¯̀(θ)
λt+1 = λt − ρ∇µEq

[
¯̀(θ)−H(q)

]



Sketch of proof : GD (order 1)

q(θ) = N (m, Ip)
λ = m
µ = m
H(q) = log 2π

2

θt+1 = θt − ρ∇θ ¯̀(θt)
Smoothing Eq ¯̀(θ) ≈ ¯̀(m)
mt+1 = mt − ρ∇mEq ¯̀(θ)

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]



Variational Online Gauss-Newton (order 2)

When Q = N (m,Σ2) with diagonal covariance Σ, we lead to
vogn ([4]):

µt+1 = µt − αt
∇θ`(Yi , gθt (Xi )) + δ̃µt

st+1 + δ̃
,

where δ̃ = τδ/M and:

st+1 = (1− τβt)st + βt
∑

i∈mbt

∇θ`(Yi , gθt (Xi ))2.

RMSprop or Adam equivalence :

θt+1 = θt − αt
1
M

∑
i∈mbt ∇θ`(Yi , gθt (Xi )) + δθt

st+1 + δ̃



Variational Online Gauss-Newton (order 2)

When Q = N (m,Σ2) with diagonal covariance Σ, we lead to
vogn ([4]):

µt+1 = µt − αt
∇θ`(Yi , gθt (Xi )) + δ̃µt

st+1 + δ̃
,

where δ̃ = τδ/M and:

st+1 = (1− τβt)st + βt
∑

i∈mbt

∇θ`(Yi , gθt (Xi ))2.

RMSprop or Adam equivalence :

θt+1 = θt − αt
1
M

∑
i∈mbt ∇θ`(Yi , gθt (Xi )) + δθt

st+1 + δ̃



History of Bayesian Neural Networks

• 1995 [5] for MCMC origin,
• 2011 [3] for VI approach to TIMIT

speech dataset,
• 2016 [2] uses MC-dropout as

Bayesian approximation,
• 2017 [1] uses confidence intervals

for adversarial attacks,
• 2018 [4] scales to Imagenet



Pytorch library

We use pytorch-sso an open-source library for second-order
optimization and Bayesian inference developped Approx-Bayes
Team of the Riken Institute.

https://github.com/cybertronai/pytorch-sso


Outlines

1 Bayesian Deep Learning

2 Active Learning for Computer Vision

3 Active Learning for NLP



The problem

We want to use this optimizer for active learning on CIFAR 10:
1 Start an initial training with a subsample of the training set,
2 Select a second subsample with Bayesian-like incertainty,
3 Continue training with this second subsample,
4 Validate over the test set.

We want to compare this routine with standard non-Bayesian
approaches.



Uncertainty metrics

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.



Uncertainty metrics

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.



Results



Results



Outlines

1 Bayesian Deep Learning

2 Active Learning for Computer Vision

3 Active Learning for NLP



The problem

Objective We want to reproduce these results with NLP models.
• Task: Multi-label text classification (MTC, XMTC)
• Dataset la-derniere-bibliotheque.org
• Dataset philoml.org
• Validation metrics top1, top5 and ’recall’.

https://la-derniere-bibliotheque.org/
http://127.0.0.1:8003/


Benchmark

LDB dataset Camembert1 Flaubert2

top5 0.98 0.97
top1 0.78 0.77
recall 0.8 0.8

PHI dataset Camembert Flaubert
top5 0.91 -
top1 0.66 -
recall 0.71 -

1CamembertForSequenceClassification50 epochs, lr=10−4

2FlaubertForSequenceClassification with 50 epochs, lr=10−5



Bayesian NLP

We test active learning by training a FC layer with VOGN in the
following pipeline:
• Start an initial training with a subsample of the training set in
two steps:
• train Tranformers embeddings with 5 epochs,
• train a FC layer with VOGN.

• Select a second subsample with Bayesian-like incertainty,
• Continue training with this second subsample,
• Validate over the test set.



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
The randomness of the Bayesian procedure does the job !



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING

The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
The randomness of the Bayesian procedure does the job !



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
The randomness of the Bayesian procedure does the job !



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.

The randomness of the Bayesian procedure does the job !



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
The randomness of the Bayesian procedure does the job !



References I

John Bradshaw, Alexander G. de G. Matthews, and Zoubin
Ghahramani.
Adversarial examples, uncertainty, and transfer testing
robustness in gaussian process hybrid deep networks, 2017.

Yarin Gal and Zoubin Ghahramani.
Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, 2016.

Alex Graves.
Practical variational inference for neural networks.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.
Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.



References II

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt,
Wu Lin, Yarin Gal, and Akash Srivastava.
Fast and scalable bayesian deep learning by
weight-perturbation in adam, 2018.

Redford M. Neal.
Bayesian learning for neural networks, 1995.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa
Eschenhagen, Richard E. Turner, Rio Yokota, and
Mohammad Emtiyaz Khan.
Practical deep learning with bayesian principles, 2019.


	Bayesian Deep Learning
	Active Learning for Computer Vision
	Active Learning for NLP

