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Convex optimization

Gradient descent can be written as:

xt+1 := arg min
x∈X

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

Mirror descent solves:

xt+1 := arg min
x∈P
{η∇f (xt) · x + BΦ(x , xt)} .

Main idea change the search space X to a particular set of
probability distribution P.
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Bayesian Learning

Given a dataset {(Xi ,Yi ), i = 1, . . . , n}, a set of candidate models
{gθ, θ ∈ Θ} and a loss function `(·, ·):
Frequentist paradigm

min
θ∈Θ

{ n∑
i=1

`(Yi , gθ(Xi )) + α pen(θ),
}

where pen(·) avoids overfitting.
Bayesian paradigm

min
ρ∈P(Θ)

{
Eθ∼ρ

n∑
i=1

`(Yi , gθ(Xi )) + αK(ρ, π)
}
,

where π is a prior distribution and K(·, ·) is the KL divergence.



The Bayesian Learning Rule [6]

Approximate the solution by solving :

min
q∈Q

{
Eθ∼q

n∑
i=1

`(Yi , gθ(Xi )) + αK(q, π)
}
,

where Q is a particular family of distribution.

For exp-families Q = {q(θ) = exp (〈λ,T (θ)〉}, we have the
natural gradient VI algorithm available:

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]
,

where ¯̀(·) =
∑n

i=1 `(Yi , f.(Xi )) and µ = Eθ∼qT (θ).

We can recover standard algorithm:
• Q = N (m, Ip) GD-like algorithm,
• Q = N (m,Σ2) Newton-like algorithm,
• Q = B(p) STE estimator.
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Sketch of proof : GD (order 1)

q(θ) = N (m, Ip)
λ = m
µ = m
H(q) = log 2π

2

θt+1 = θt − ρ∇θ ¯̀(θt)
Smoothing Eq ¯̀(θ) ≈ ¯̀(m)
mt+1 = mt − ρ∇mEq ¯̀(θ)

λt+1 = λt − ρ∇µEq
[

¯̀(θ)−H(q)
]
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Variational Online Gauss-Newton (order 2)

When Q = N (m,Σ2) with diagonal covariance Σ, we lead to
vogn ([4]):

µt+1 = µt − αt
∇θ`(Yi , gθt (Xi )) + δ̃µt

st+1 + δ̃
,

where δ̃ = τδ/M and:

st+1 = (1− τβt)st + βt
∑

i∈mbt

∇θ`(Yi , gθt (Xi ))2.

RMSprop or Adam equivalence :

θt+1 = θt − αt
1
M

∑
i∈mbt ∇θ`(Yi , gθt (Xi )) + δθt

st+1 + δ̃
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History of Bayesian Neural Networks

• 1995 [5] for MCMC origin,
• 2011 [3] for VI approach to TIMIT

speech dataset,
• 2016 [2] uses MC-dropout as

Bayesian approximation,
• 2017 [1] uses confidence intervals

for adversarial attacks,
• 2018 [4] scales to Imagenet



Pytorch library

We use pytorch-sso an open-source library for second-order
optimization and Bayesian inference developped Approx-Bayes
Team of the Riken Institute.

https://github.com/cybertronai/pytorch-sso
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The problem

We want to use this optimizer for active learning on CIFAR 10:
1 Start an initial training with a subsample of the training set,
2 Select a second subsample with Bayesian-like incertainty,
3 Continue training with this second subsample,
4 Validate over the test set.

We want to compare this routine with standard non-Bayesian
approaches.



Uncertainty metrics

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
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The problem

Objective We want to reproduce these results with NLP models.
• Task: Multi-label text classification (MTC, XMTC)
• Dataset la-derniere-bibliotheque.org
• Dataset philoml.org
• Validation metrics top1, top5 and ’recall’.

https://la-derniere-bibliotheque.org/
http://127.0.0.1:8003/


Benchmark

LDB dataset Camembert1 Flaubert2

top5 0.98 0.97
top1 0.78 0.77
recall 0.8 0.8

PHI dataset Camembert Flaubert
top5 0.91 -
top1 0.66 -
recall 0.71 -

1CamembertForSequenceClassification50 epochs, lr=10−4

2FlaubertForSequenceClassification with 50 epochs, lr=10−5



Bayesian NLP

We test active learning by training a FC layer with VOGN in the
following pipeline:
• Start an initial training with a subsample of the training set in
two steps:
• train Tranformers embeddings with 5 epochs,
• train a FC layer with VOGN.

• Select a second subsample with Bayesian-like incertainty,
• Continue training with this second subsample,
• Validate over the test set.



Uncertainty metrics for MTC

Non-Bayesian measures
For a deterministic network gθT , compute x 7→ U(gθT (x)), where:
• U(y) = H(y) for entropy uncertainty,
• U(y) = 1− (y (1) − y (2)) for difference uncertainty.

WARNING The uncertainty depends on the number of tags!

Bayesian measures
For a Bayesian solution qT (·) ∼ N (mT ,ΣT ), sample N = 10
outputs and compute:

x 7→ HqT (y (u)(x)),

where y (u)(·) is the distribution of the top-u outputs over the
N = 10 realizations.
The randomness of the Bayesian procedure does the job !
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