
Deep learning theory
for power-efficient algorithms

Sébastien Loustau
j.w.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

November, 29th, 2021
Team ApproxBayes, RIKEN AIP



Deep learning theory
for power-efficient algorithms

Sébastien Loustau
j.w.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

November, 29th, 2021
Team ApproxBayes, RIKEN AIP



Outlines

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem



Outlines

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem



Convexity and gradient

Let f : K ⊂ Rp → R a convex function on a convex body.

If f is differentiable, ∀x , y ∈ K ,

f (y) ≥ f (x) +∇f (x) · (y − x).

For y = arg minK f (x), we have :

−∇f (x) · (y − x) ≥ 0.

The gradient flow d
dt xt = −∇f (xt) is suitable for convex opt



Convexity and gradient

Let f : K ⊂ Rp → R a convex function on a convex body.
If f is differentiable, ∀x , y ∈ K ,

f (y) ≥ f (x) +∇f (x) · (y − x).

For y = arg minK f (x), we have :

−∇f (x) · (y − x) ≥ 0.

The gradient flow d
dt xt = −∇f (xt) is suitable for convex opt



Convexity and gradient

Let f : K ⊂ Rp → R a convex function on a convex body.
If f is differentiable, ∀x , y ∈ K ,

f (y) ≥ f (x) +∇f (x) · (y − x).

For y = arg minK f (x), we have :

−∇f (x) · (y − x) ≥ 0.

The gradient flow d
dt xt = −∇f (xt) is suitable for convex opt



Convexity and gradient

Let f : K ⊂ Rp → R a convex function on a convex body.
If f is differentiable, ∀x , y ∈ K ,

f (y) ≥ f (x) +∇f (x) · (y − x).

For y = arg minK f (x), we have :

−∇f (x) · (y − x) ≥ 0.

The gradient flow d
dt xt = −∇f (xt) is suitable for convex opt



Gradient descent

Theorem
Under the previous assumption, the discretized version

xt+1 = xt − η∇f (xt), t = 1, . . . ,T , (1)

satisfies:

1
T

T∑
t=1

f (xt)− f (y) ≤ ‖y − x1‖2

2η + η

2

T∑
t=1
‖∇f (xt)‖2.

Proof.
The drop at time t satisfies:

‖xt+1 − y‖2 − ‖xt − y‖2 = −2η(xt − y)∇f (xt) + η2‖∇f (xt)‖2.



Gradient descent

Theorem
Under the previous assumption, the discretized version

xt+1 = xt − η∇f (xt), t = 1, . . . ,T , (1)

satisfies:

1
T

T∑
t=1

f (xt)− f (y) ≤ ‖y − x1‖2

2η + η

2

T∑
t=1
‖∇f (xt)‖2.

Proof.
The drop at time t satisfies:

‖xt+1 − y‖2 − ‖xt − y‖2 = −2η(xt − y)∇f (xt) + η2‖∇f (xt)‖2.



Extension to non-euclidean settings

Gradient descent (1) can be written as:

xt+1 := arg min
x∈K

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

⇒ no localization and pure Euclidean setting



Extension to non-euclidean settings

Gradient descent (1) can be written as:

xt+1 := arg min
x∈K

{
η∇f (xt) · x + ‖x − xt‖2

2

}
.

⇒ no localization and pure Euclidean setting



Mirror descent

Mirror descent solves:

xt+1 := arg min
x∈K
{η∇f (xt) · x + BΦ(x , xt)} , (2)

• Right dual form ∇Φ(xt+1) = ∇Φ(xt)− η∇f (xt),
• For Φ(x) = ‖x‖2

2 , (2) ⇔ (1),
• BΦ(x , xt) = ‖x − xt‖2∇2Φ(ωt ) by Taylor approximation,
• Next: (2) with Φ(ρ) =

∫
ρ log ρ, then BΦ(ρ, π) = K(ρ, π) and

we get for instance Bayesian updating.



Mirror descent

Mirror descent solves:

xt+1 := arg min
x∈K
{η∇f (xt) · x + BΦ(x , xt)} , (2)

• Right dual form ∇Φ(xt+1) = ∇Φ(xt)− η∇f (xt),

• For Φ(x) = ‖x‖2

2 , (2) ⇔ (1),
• BΦ(x , xt) = ‖x − xt‖2∇2Φ(ωt ) by Taylor approximation,
• Next: (2) with Φ(ρ) =

∫
ρ log ρ, then BΦ(ρ, π) = K(ρ, π) and

we get for instance Bayesian updating.



Mirror descent

Mirror descent solves:

xt+1 := arg min
x∈K
{η∇f (xt) · x + BΦ(x , xt)} , (2)

• Right dual form ∇Φ(xt+1) = ∇Φ(xt)− η∇f (xt),
• For Φ(x) = ‖x‖2

2 , (2) ⇔ (1),

• BΦ(x , xt) = ‖x − xt‖2∇2Φ(ωt ) by Taylor approximation,
• Next: (2) with Φ(ρ) =

∫
ρ log ρ, then BΦ(ρ, π) = K(ρ, π) and

we get for instance Bayesian updating.



Mirror descent

Mirror descent solves:

xt+1 := arg min
x∈K
{η∇f (xt) · x + BΦ(x , xt)} , (2)

• Right dual form ∇Φ(xt+1) = ∇Φ(xt)− η∇f (xt),
• For Φ(x) = ‖x‖2

2 , (2) ⇔ (1),
• BΦ(x , xt) = ‖x − xt‖2∇2Φ(ωt ) by Taylor approximation,

• Next: (2) with Φ(ρ) =
∫
ρ log ρ, then BΦ(ρ, π) = K(ρ, π) and

we get for instance Bayesian updating.



Mirror descent

Mirror descent solves:

xt+1 := arg min
x∈K
{η∇f (xt) · x + BΦ(x , xt)} , (2)

• Right dual form ∇Φ(xt+1) = ∇Φ(xt)− η∇f (xt),
• For Φ(x) = ‖x‖2

2 , (2) ⇔ (1),
• BΦ(x , xt) = ‖x − xt‖2∇2Φ(ωt ) by Taylor approximation,
• Next: (2) with Φ(ρ) =

∫
ρ log ρ, then BΦ(ρ, π) = K(ρ, π) and

we get for instance Bayesian updating.



Outlines

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem



Online learning
PAC Bayesian framework

Considering a deterministic set {zt , t = 1, . . . ,T}, a set of experts
G and a loss function, we want to build a sequence of
distributions (ρt)T

t=1 on G satisfying:

T∑
t=1

Eg∼ρt `(g , zt) ≤ inf
g∈G

{ T∑
t=1

`(g , zt) + pen(g)
}

+ ∆T ,

where
• pen(g) measures the complexity of the network,
• ∆T > 0 is at least sublinear.



Supervised framework for CNNs
Framework

• z = (x , y), x ∈ X input space of images, time series, network,
• the cross-entropy loss function `(ŷ , y),
• G := {gw : X → Y,w ∈ W}, where w are the weights of a
given CNNs architecture or set of architectures,

• G := {gw : X → Y,w ∈ W} is a set of XNOR-nets
architecture. For XNOR-nets convolutions are approximated
by bitwise operations:

xk =
(
wbin

k
⊕

sign ◦ BNorm (xk−1)
)⊙

wscale
k .



Supervised framework for CNNs
Framework

• z = (x , y), x ∈ X input space of images, time series, network,
• the cross-entropy loss function `(ŷ , y),
• G := {gw : X → Y,w ∈ W}, where w are the weights of a
given CNNs architecture or set of architectures,
• G := {gw : X → Y,w ∈ W} is a set of XNOR-nets

architecture. For XNOR-nets convolutions are approximated
by bitwise operations:

xk =
(
wbin

k
⊕

sign ◦ BNorm (xk−1)
)⊙

wscale
k .



Sparsity regret bound
Standard case

Theorem
Considering inputs {(xt , yt), t = 1, . . . ,T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(ρt)T

t=1 on G such that:

T∑
t=1

Eg ′∼ρt `(yt , g ′(xt)) ≤ inf
w∈W

{ T∑
t=1

`(yt , gw(xt)) + pen(gw)
}

+∆T ,

where ∆T > 0 is optimal and pen(gw) measures the complexity of
the network as follows:

pen(gw) = 4‖w‖0 log
(
1 + ‖w‖1

τ‖w‖0

)



Sparsity regret bound
Proof.
The proof is based on two facts:
• A PAC-Bayesian bound due to [Audibert, 2009]:

T∑
t=1

Eg∼ρt `(g , zt) ≤ inf
ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(g , zt) + K(ρ, π)
λ

}
,

where ¯̀(y , g(x)) = `(y , g(x)) + λ
2 (`(y , g(x)− `(y , ĝt(x)))2

satisfies a mixability condition,

• The choice of a power law π such that:

K(πw, π) = 4‖w‖0 log
(
1 + ‖w‖1

τ‖w‖0

)
,

where πw is a translated version of π.



Sparsity regret bound
Proof.
The proof is based on two facts:
• A PAC-Bayesian bound due to [Audibert, 2009]:

T∑
t=1

Eg∼ρt `(g , zt) ≤ inf
ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(g , zt) + K(ρ, π)
λ

}
,

where ¯̀(y , g(x)) = `(y , g(x)) + λ
2 (`(y , g(x)− `(y , ĝt(x)))2

satisfies a mixability condition,
• The choice of a power law π such that:

K(πw, π) = 4‖w‖0 log
(
1 + ‖w‖1

τ‖w‖0

)
,

where πw is a translated version of π.



Sparsity regret bound
XNOR-Nets case

Theorem
Considering inputs {(xt , yt), t = 1, . . . ,T}, the decision space G,
and cross-entropy loss, there exists a sequence of distributions
(ρt)T

t=1 on G such that:

T∑
t=1

Eg ′∼ρt `(yt , g ′(xt)) ≤ inf
w∈WXNOR

{ T∑
t=1

`(yt , gw(xt)) + pen(gw)
}

+∆T ,

where ∆T > 0 is optimal and pen(gw) measure the complexity of
the network as follows:

pen(gw) = 4
∑

w∈{wreal,wscale}
‖w‖0 log

(
1 + ‖w‖1

τ‖w‖0

)
+ pbin log 2



Algorithm
Pseudo-code

Hyper-parameters : sparsity prior π ∈ P(G). Parameter λ > 0.
• Observe x1 and draw ŷ1 = gŵ1(x1) where ŵ1 ∼ ρ1 := π.
• For t = 1, . . . ,T − 1:

• Observe yt and draw ŷt+1 = gŵt+1 (xt+1) where:

ŵt+1 ∼ exp
{
−λ

t∑
u=1

¯̀(yu, gw(xu))
}
dπ(w).



Challenging sampling problem

From the theoretical part, we want to sample from:

dρT (w) ∼ exp
{
−λ

T∑
t=1

`(yt , gw(xt))
}
dπ(w),

where prior π ∈ P(W) is a mixture of sparsity priors related with
CNNs architectures.

Problem dimension of W is huge (from 60k to 150M parameters)



Greedy (RJ)-MCMC algorithm

Initialization : w1 ∼ π. Parameter λ > 0.

For m = 1, . . .M do
For k = 1, . . . ,N do
• Pick a layer ` ∈ {1, . . . , L} at random,
• Propose w̃ ∼ p(·|wk),
• Accept wk+1 = w̃ with proba:

ρ =
exp{−λ

∑
t∈Im `(yt , gw̃(xt))}

exp{−λ
∑

t∈Im `(yt , gwk (xt))}
π(w̃)
π(wk) .



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Greedy (RJ)-MCMC algorithm
Example on a simple CNN



Resistence to pruning on CIFAR-10

• CNN with 60,000 params,
• SGD with batch size 256 and no acceleration,
• MCMC with 200 iterations by epoch.



Resistence to pruning on CIFAR-10

• CNN with 60,000 params,
• SGD with batch size 256 and no acceleration,
• MCMC with 200 iterations by epoch.



Resistence to pruning on CIFAR-10
stochastic gradient descent



Resistence to pruning on CIFAR-10
mcmc algorithm



Lazy regime
gradient descent VS mcmc



Outlines

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem



Motivation

How to consider a new metrical task ?

• add a cost to the loss function ⇒ possible by
non-differentiable programming,
• put it directly at the core of the online decision,
• link with metrical task systems and power management.



Motivation

How to consider a new metrical task ?
• add a cost to the loss function ⇒ possible by
non-differentiable programming,

• put it directly at the core of the online decision,
• link with metrical task systems and power management.



Motivation

How to consider a new metrical task ?
• add a cost to the loss function ⇒ possible by
non-differentiable programming,
• put it directly at the core of the online decision,

• link with metrical task systems and power management.



Motivation

How to consider a new metrical task ?
• add a cost to the loss function ⇒ possible by
non-differentiable programming,
• put it directly at the core of the online decision,
• link with metrical task systems and power management.



Motivation

How to consider a new metrical task ?
• add a cost to the loss function ⇒ possible by
non-differentiable programming,
• put it directly at the core of the online decision ,
• link with metrical task systems and power management.



From mirror descent to Optimal transport

Mirror descent solves:

ρt+1 := arg min
ρ∈P(G)

{η〈∇f (ρt), ρ〉+ BΦ(ρ, ρt)} .

• Φ(x) ≈ ‖x‖2 ⇒ no localization,
• Φ(ρ) =

∫
ρ log ρ ⇒ sparsity,

ρt
Joules?→ ρt+1



From mirror descent to Optimal transport

Mirror descent solves:

ρt+1 := arg min
ρ∈P(G)

{η〈∇f (ρt), ρ〉+ BΦ(ρ, ρt)} .

• Φ(x) ≈ ‖x‖2 ⇒ no localization,

• Φ(ρ) =
∫
ρ log ρ ⇒ sparsity,

ρt
Joules?→ ρt+1



From mirror descent to Optimal transport

Mirror descent solves:

ρt+1 := arg min
ρ∈P(G)

{η〈∇f (ρt), ρ〉+ BΦ(ρ, ρt)} .

• Φ(x) ≈ ‖x‖2 ⇒ no localization,
• Φ(ρ) =

∫
ρ log ρ ⇒ sparsity,

ρt
Joules?→ ρt+1



From mirror descent to Optimal transport

Mirror descent solves:

ρt+1 := arg min
ρ∈P(G)

{η〈∇f (ρt), ρ〉+ BΦ(ρ, ρt)} .

• Φ(x) ≈ ‖x‖2 ⇒ no localization,
• Φ(ρ) =

∫
ρ log ρ ⇒ sparsity,

ρt
Joules?→ ρt+1



From mirror descent to Optimal transport

Mirror descent solves:

ρt+1 := arg min
ρ∈P(G)

{η〈∇f (ρt), ρ〉+ BΦ(ρ, ρt)} .

• Φ(x) ≈ ‖x‖2 ⇒ no localization,
• Φ(ρ) =

∫
ρ log ρ ⇒ sparsity.

ρt
Joules?→ ρt+1



Optimal transport

Consider the sequence (ρt)T
t=1 defined as:

ρt+1 := arg min
ρ∈P(G)

{
Eg∼ρ ¯̀(g , zt) + Wα(ρ, ρt)

λ

}
, (3)

where ¯̀(g , zt) = `(g , zt) + δt(α, λ).

Idea : replace BΦ(ρ, π) by a Wα(ρ, π), strictly convex perturbation
of the original optimal transport defined as:

Wα(ρ, π) := min
Λ∈∆(ρ,π)

{∫
G×G

C(g , g ′)dΛ(g , g ′)− αH(Λ)
}
,

for some α > 0 and cost C : G × G → R.



Optimal transport

Consider the sequence (ρt)T
t=1 defined as:

ρt+1 := arg min
ρ∈P(G)

{
Eg∼ρ ¯̀(g , zt) + Wα(ρ, ρt)

λ

}
, (3)

where ¯̀(g , zt) = `(g , zt) + δt(α, λ).
Idea : replace BΦ(ρ, π) by a Wα(ρ, π), strictly convex perturbation
of the original optimal transport defined as:

Wα(ρ, π) := min
Λ∈∆(ρ,π)

{∫
G×G

C(g , g ′)dΛ(g , g ′)− αH(Λ)
}
,

for some α > 0 and cost C : G × G → R.



Optimal transport theorem

Theorem
Assume G is finite and let T , λ > 0. Let z1, . . . , zT deterministic
data. Then ∀π ∈ P(G), (ρt)T

t=1 based on (3) is such that :

T∑
t=1

Eg∼Π(ρt )`(g , zt) ≤ inf
ρ∈P(G)

{
Eg∼ρ

T∑
t=1

¯̀(g , zt) + Wα(ρ, π)
λ

}
+∆T ,λ,

where ∆T ,λ > 0 and Π : P(G)→ P(G) is defined as:

dΠ(ρt)(g) = A(ρt)Eg ′∼ρt exp
{
−C(g , g ′)

α

}
.



Proof.
• new mixability condition ∃δλ,α : ∀π,∃Π(π) : ∀z ,

Eg ′∼Π(ρ)`(g ′, z) ≤ Eg ′∼Π(ρ) min
ρ

{
Eg∼ρ ¯̀(g , z) + Wα(ρ, π)

λ

}
,

where ¯̀ = `(g , z) + δλ,α(g , g ′).

• generalized PAC-Bayesian bound with BΦ,
• applied for Φ(·) =Wα(·, ν).



Proof.
• new mixability condition ∃δλ,α : ∀π,∃Π(π) : ∀z ,

Eg ′∼Π(ρ)`(g ′, z) ≤ Eg ′∼Π(ρ) min
ρ

{
Eg∼ρ ¯̀(g , z) + Wα(ρ, π)

λ

}
,

where ¯̀ = `(g , z) + δλ,α(g , g ′).
• generalized PAC-Bayesian bound with BΦ,

• applied for Φ(·) =Wα(·, ν).



Proof.
• new mixability condition ∃δλ,α : ∀π,∃Π(π) : ∀z ,

Eg ′∼Π(ρ)`(g ′, z) ≤ Eg ′∼Π(ρ) min
ρ

{
Eg∼ρ ¯̀(g , z) + Wα(ρ, π)

λ

}
,

where ¯̀ = `(g , z) + δλ,α(g , g ′).
• generalized PAC-Bayesian bound with BΦ,
• applied for Φ(·) =Wα(·, ν).



Corollary

Corollary
Let π = δg?η the Dirac measure on the unique minimizer:

g?η := arg min
g∈G
{Erri + ηEnvi} .

Consider minimization (3) with C(gi , gj) := C(Envi,Envj) we
have:

T∑
t=1

Eĝt∼ρ̃t `(ĝt , zt) ≤ min
g∈G

{ T∑
t=1

¯̀(g , zt) + C(g , gi?)
λ

}
+ ∆T .



Link with metrical task systems

Let X a finite metric space of size n.
At every time step t = 1, . . . ,T :
• the player receive a task function ct : X → R+,
• moove from state st−1 to st and pay the movement cost

d(st−1, st) and the service cost ct(st).

⇒ Many applications like power management,
⇒ Link with PEA,
⇒ New competitive ratios instead of regret (OPT is mooving)
⇒ Optimal bound for stochastic algorithm is an open problem.



Link with metrical task systems

Let X a finite metric space of size n.
At every time step t = 1, . . . ,T :
• the player receive a task function ct : X → R+,
• moove from state st−1 to st and pay the movement cost

d(st−1, st) and the service cost ct(st).
⇒ Many applications like power management,

⇒ Link with PEA,
⇒ New competitive ratios instead of regret (OPT is mooving)
⇒ Optimal bound for stochastic algorithm is an open problem.



Link with metrical task systems

Let X a finite metric space of size n.
At every time step t = 1, . . . ,T :
• the player receive a task function ct : X → R+,
• moove from state st−1 to st and pay the movement cost

d(st−1, st) and the service cost ct(st).
⇒ Many applications like power management,
⇒ Link with PEA,

⇒ New competitive ratios instead of regret (OPT is mooving)
⇒ Optimal bound for stochastic algorithm is an open problem.



Link with metrical task systems

Let X a finite metric space of size n.
At every time step t = 1, . . . ,T :
• the player receive a task function ct : X → R+,
• moove from state st−1 to st and pay the movement cost

d(st−1, st) and the service cost ct(st).
⇒ Many applications like power management,
⇒ Link with PEA,
⇒ New competitive ratios instead of regret (OPT is mooving)

⇒ Optimal bound for stochastic algorithm is an open problem.



Link with metrical task systems

Let X a finite metric space of size n.
At every time step t = 1, . . . ,T :
• the player receive a task function ct : X → R+,
• moove from state st−1 to st and pay the movement cost

d(st−1, st) and the service cost ct(st).
⇒ Many applications like power management,
⇒ Link with PEA,
⇒ New competitive ratios instead of regret (OPT is mooving)
⇒ Optimal bound for stochastic algorithm is an open problem.



Concluding remarks

Summary
• a new optimizer based on theoretical framework,
• uses sparsity to get robustness to pruning,
• extend previous PAC-Bayesian approach to Bregman and
Optimal Transport.

Open problems
• scale this new optimizer to imagenet,
• propose a power managed deep learning method at inference,
• introduce step by step the electricity constraints into the
online decision.



Concluding remarks

Summary
• a new optimizer based on theoretical framework,
• uses sparsity to get robustness to pruning,
• extend previous PAC-Bayesian approach to Bregman and
Optimal Transport.

Open problems
• scale this new optimizer to imagenet,
• propose a power managed deep learning method at inference,
• introduce step by step the electricity constraints into the
online decision.



THANK YOU

• AIPowerMeter software,
• More materials on ACML workshop organized here,
• Mathematical contents [1] for sparsity and [2] for Bregman
and Optimal Transport,
• Website of the whole project.

https://github.com/GreenAI-Uppa/AIPowerMeter
https://greenai-uppa.github.io/power_efficient_deep_learning/
https://hal.archives-ouvertes.fr/hal-03262679/file/Sparsity_Regret_bounds_for_Xnornets.pdf
https://hal.archives-ouvertes.fr/hal-03262687
https://hal.archives-ouvertes.fr/hal-03262687
https://greenai-uppa.github.io/


THANK YOU

• AIPowerMeter software,
• More materials on ACML workshop organized here,
• Mathematical contents [1] for sparsity and [2] for Bregman
and Optimal Transport,
• Website of the whole project.

https://github.com/GreenAI-Uppa/AIPowerMeter
https://greenai-uppa.github.io/power_efficient_deep_learning/
https://hal.archives-ouvertes.fr/hal-03262679/file/Sparsity_Regret_bounds_for_Xnornets.pdf
https://hal.archives-ouvertes.fr/hal-03262687
https://hal.archives-ouvertes.fr/hal-03262687
https://greenai-uppa.github.io/

	Gentle start with gradient and mirror descent
	First application: how to learn sparse deep nets
	Extension to the power metrical task problem

