Deep learning theory for power-efficient algorithms

Sébastien Loustau

j.w.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

November, 29th, 2021 Team ApproxBayes, RIKEN AIP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Deep learning theory for power-efficient algorithms

Sébastien Loustau

j.w.w. A. Chee (Cornell, Ithaca), and P. Gay (team member)

Outlines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem

Outlines

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $f : K \subset \mathbb{R}^p \to \mathbb{R}$ a convex function on a convex body.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $f : K \subset \mathbb{R}^p \to \mathbb{R}$ a convex function on a convex body. If f is differentiable, $\forall x, y \in K$,

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let $f : K \subset \mathbb{R}^p \to \mathbb{R}$ a convex function on a convex body. If f is differentiable, $\forall x, y \in K$,

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x).$$

For $y = \arg \min_{K} f(x)$, we have :

$$-\nabla f(x) \cdot (y-x) \geq 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $f : K \subset \mathbb{R}^p \to \mathbb{R}$ a convex function on a convex body. If f is differentiable, $\forall x, y \in K$,

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x).$$

For $y = \arg \min_{K} f(x)$, we have :

$$-\nabla f(x) \cdot (y-x) \geq 0.$$

The gradient flow $\frac{d}{dt}x_t = -\nabla f(x_t)$ is suitable for convex opt

Gradient descent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Under the previous assumption, the discretized version

$$x_{t+1} = x_t - \eta \nabla f(x_t), \ t = 1, \dots, T, \tag{1}$$

satisfies:

$$\frac{1}{T}\sum_{t=1}^{T}f(x_t) - f(y) \leq \frac{\|y - x_1\|^2}{2\eta} + \frac{\eta}{2}\sum_{t=1}^{T}\|\nabla f(x_t)\|^2.$$

Gradient descent

Theorem

Under the previous assumption, the discretized version

$$x_{t+1} = x_t - \eta \nabla f(x_t), \ t = 1, \dots, T,$$
 (1)

satisfies:

$$\frac{1}{T}\sum_{t=1}^{T}f(x_t) - f(y) \leq \frac{\|y - x_1\|^2}{2\eta} + \frac{\eta}{2}\sum_{t=1}^{T}\|\nabla f(x_t)\|^2.$$

Proof.

The drop at time *t* satisfies:

$$\|x_{t+1} - y\|^2 - \|x_t - y\|^2 = -2\eta(x_t - y)\nabla f(x_t) + \eta^2 \|\nabla f(x_t)\|^2.$$

Extension to non-euclidean settings

(ロ)、(型)、(E)、(E)、 E) の(()

Gradient descent (1) can be written as:

$$x_{t+1} := \arg\min_{x\in K} \left\{ \eta \nabla f(x_t) \cdot x + \frac{\|x-x_t\|^2}{2}
ight\}.$$

Extension to non-euclidean settings

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gradient descent (1) can be written as:

$$x_{t+1} := \arg\min_{x \in K} \left\{ \eta \nabla f(x_t) \cdot x + \frac{\|x - x_t\|^2}{2}
ight\}.$$

 \Rightarrow no localization and pure Euclidean setting

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Mirror descent solves:

$$x_{t+1} := \arg\min_{x \in \mathcal{K}} \left\{ \eta \nabla f(x_t) \cdot x + \mathcal{B}_{\Phi}(x, x_t) \right\},$$
(2)

(ロ)、(型)、(E)、(E)、 E) の(()

Mirror descent solves:

$$x_{t+1} := \arg\min_{x \in \mathcal{K}} \left\{ \eta \nabla f(x_t) \cdot x + \mathcal{B}_{\Phi}(x, x_t) \right\},$$
(2)

• Right dual form $\nabla \Phi(x_{t+1}) = \nabla \Phi(x_t) - \eta \nabla f(x_t)$,

(ロ)、(型)、(E)、(E)、 E) の(()

Mirror descent solves:

$$x_{t+1} := \arg\min_{x \in \mathcal{K}} \left\{ \eta \nabla f(x_t) \cdot x + \mathcal{B}_{\Phi}(x, x_t) \right\},$$
(2)

• Right dual form $\nabla \Phi(x_{t+1}) = \nabla \Phi(x_t) - \eta \nabla f(x_t)$,

• For
$$\Phi(x) = \frac{\|x\|^2}{2}$$
, (2) \Leftrightarrow (1),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mirror descent solves:

$$x_{t+1} := \arg\min_{x \in \mathcal{K}} \left\{ \eta \nabla f(x_t) \cdot x + \mathcal{B}_{\Phi}(x, x_t) \right\},$$
(2)

• Right dual form $\nabla \Phi(x_{t+1}) = \nabla \Phi(x_t) - \eta \nabla f(x_t)$,

• For
$$\Phi(x) = rac{\|x\|^2}{2}$$
, (2) \Leftrightarrow (1),

• $\mathcal{B}_{\Phi}(x, x_t) = \|x - x_t\|_{\nabla^2 \Phi(\omega_t)}^2$ by Taylor approximation,

Mirror descent solves:

$$x_{t+1} := \arg\min_{x \in \mathcal{K}} \left\{ \eta \nabla f(x_t) \cdot x + \mathcal{B}_{\Phi}(x, x_t) \right\},$$
(2)

• Right dual form $\nabla \Phi(x_{t+1}) = \nabla \Phi(x_t) - \eta \nabla f(x_t)$,

• For
$$\Phi(x) = \frac{\|x\|^2}{2}$$
, (2) \Leftrightarrow (1),

- $\mathcal{B}_{\Phi}(x, x_t) = \|x x_t\|_{\nabla^2 \Phi(\omega_t)}^2$ by Taylor approximation,
- Next: (2) with $\Phi(\rho) = \int \rho \log \rho$, then $\mathcal{B}_{\Phi}(\rho, \pi) = \mathcal{K}(\rho, \pi)$ and we get for instance Bayesian updating.

Outlines

Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem

Online learning

PAC Bayesian framework

Considering a deterministic set $\{z_t, t = 1, ..., T\}$, a set of experts \mathcal{G} and a loss function, we want to build a **sequence of** distributions $(\rho_t)_{t=1}^T$ on \mathcal{G} satisfying:

$$\sum_{t=1}^{T} \mathbb{E}_{g \sim \rho_t} \ell(g, z_t) \leq \inf_{g \in \mathcal{G}} \left\{ \sum_{t=1}^{T} \ell(g, z_t) + \mathsf{pen}(g) \right\} + \Delta_T,$$

where

- pen(g) measures the **complexity** of the network,
- $\Delta_T > 0$ is at least sublinear.

Supervised framework for CNNs Framework

- z = (x, y), $x \in \mathcal{X}$ input space of images, time series, network,
- the **cross-entropy** loss function $\ell(\hat{y}, y)$,
- $\mathcal{G} := \{g_{\mathbf{w}} : \mathcal{X} \to \mathcal{Y}, \mathbf{w} \in \mathcal{W}\}$, where \mathbf{w} are the weights of a given CNNs architecture or set of architectures,

Supervised framework for CNNs Framework

- z = (x, y), $x \in \mathcal{X}$ input space of images, time series, network,
- the **cross-entropy** loss function $\ell(\hat{y}, y)$,
- $\mathcal{G} := \{g_{\mathbf{w}} : \mathcal{X} \to \mathcal{Y}, \mathbf{w} \in \mathcal{W}\}$, where \mathbf{w} are the weights of a given CNNs architecture or set of architectures,
- G := {g_w : X → Y, w ∈ W} is a set of XNOR-nets architecture. For XNOR-nets convolutions are approximated by bitwise operations:

$$x_k = \left(\mathbf{w}_k^{\text{bin}} \bigoplus \text{sign} \circ \text{BNorm}(x_{k-1})\right) \bigodot \mathbf{w}_k^{\text{scale}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sparsity regret bound Standard case

Theorem

Considering inputs $\{(x_t, y_t), t = 1, ..., T\}$, the decision space \mathcal{G} , and cross-entropy loss, there exists a **sequence of distributions** $(\rho_t)_{t=1}^T$ on \mathcal{G} such that:

$$\sum_{t=1}^{T} \mathbb{E}_{g' \sim \rho_t} \ell(y_t, g'(x_t)) \leq \inf_{\mathbf{w} \in \mathcal{W}} \left\{ \sum_{t=1}^{T} \ell(y_t, g_{\mathbf{w}}(x_t)) + pen(g_{\mathbf{w}}) \right\} + \Delta_{\mathcal{T}},$$

where $\Delta_T > 0$ is optimal and pen (g_w) measures the complexity of the network as follows:

$$pen(g_{\mathbf{w}}) = 4 \|\mathbf{w}\|_0 \log \left(1 + \frac{\|\mathbf{w}\|_1}{\tau \|\mathbf{w}\|_0}\right)$$

Sparsity regret bound

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof.

The proof is based on two facts:

• A PAC-Bayesian bound due to [Audibert, 2009]:

$$\sum_{t=1}^{T} \mathbb{E}_{g \sim \rho_t} \ell(g, z_t) \leq \inf_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \mathbb{E}_{g \sim \rho} \sum_{t=1}^{T} \bar{\ell}(g, z_t) + \frac{\mathcal{K}(\rho, \pi)}{\lambda} \right\},$$

where $\bar{\ell}(y, g(x)) = \ell(y, g(x)) + \frac{\lambda}{2} (\ell(y, g(x) - \ell(y, \hat{g}_t(x)))^2$ satisfies a mixability condition,

Sparsity regret bound

(日) (四) (日) (日)

Proof.

The proof is based on two facts:

• A PAC-Bayesian bound due to [Audibert, 2009]:

$$\sum_{t=1}^{T} \mathbb{E}_{g \sim \rho_t} \ell(g, z_t) \leq \inf_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \mathbb{E}_{g \sim \rho} \sum_{t=1}^{T} \overline{\ell}(g, z_t) + \frac{\mathcal{K}(\rho, \pi)}{\lambda} \right\},$$

where $\bar{\ell}(y, g(x)) = \ell(y, g(x)) + \frac{\lambda}{2} (\ell(y, g(x) - \ell(y, \hat{g}_t(x)))^2$ satisfies a mixability condition,

• The choice of a power law π such that:

$$\mathcal{K}(\pi_{\mathbf{w}}, \pi) = 4 \|\mathbf{w}\|_0 \log \left(1 + \frac{\|\mathbf{w}\|_1}{\tau \|\mathbf{w}\|_0}\right),$$

where $\pi_{\mathbf{w}}$ is a translated version of π .

Sparsity regret bound XNOR-Nets case

Theorem

Considering inputs $\{(x_t, y_t), t = 1, ..., T\}$, the decision space \mathcal{G} , and cross-entropy loss, there exists a sequence of distributions $(\rho_t)_{t=1}^T$ on \mathcal{G} such that:

$$\sum_{t=1}^{T} \mathbb{E}_{g' \sim \rho_t} \ell(y_t, g'(x_t)) \leq \inf_{\mathbf{w} \in \mathcal{W}_{XNOR}} \left\{ \sum_{t=1}^{T} \ell(y_t, g_{\mathbf{w}}(x_t)) + pen(g_{\mathbf{w}}) \right\} + \Delta_{T},$$

where $\Delta_T > 0$ is optimal and pen(g_w) measure the complexity of the network as follows:

$$pen(g_{\mathbf{w}}) = 4 \sum_{\mathbf{w} \in \{\mathbf{w}^{\text{real}}, \mathbf{w}^{\text{scale}}\}} \|\mathbf{w}\|_0 \log\left(1 + \frac{\|\mathbf{w}\|_1}{\tau \|\mathbf{w}\|_0}\right) + p_{\text{bin}} \log 2$$

Algorithm Pseudo-code

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hyper-parameters : sparsity prior $\pi \in \mathcal{P}(\mathcal{G})$. Parameter $\lambda > 0$.

• Observe x_1 and draw $\hat{y}_1 = g_{\hat{w}_1}(x_1)$ where $\hat{w}_1 \sim \rho_1 := \pi$.

• For
$$t = 1, ..., T - 1$$
:

• Observe y_t and draw $\hat{y}_{t+1} = g_{\hat{\mathbf{w}}_{t+1}}(x_{t+1})$ where:

$$\hat{oldsymbol{w}}_{t+1} \sim \exp\left\{-\lambda\sum_{u=1}^t ar{\ell}(y_u,g_{oldsymbol{w}}(x_u))
ight\}d\pi(oldsymbol{w}).$$

Challenging sampling problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From the theoretical part, we want to sample from:

$$d\rho_T(\mathbf{w}) \sim \exp\left\{-\lambda \sum_{t=1}^T \ell(y_t, g_{\mathbf{w}}(x_t))\right\} d\pi(\mathbf{w}),$$

where prior $\pi \in \mathcal{P}(\mathcal{W})$ is a mixture of sparsity priors related with CNNs architectures.

Problem dimension of \mathcal{W} is huge (from 60k to 150M parameters)

Initialization : $\mathbf{w}_1 \sim \pi$. Parameter $\lambda > 0$.

For $m = 1, \dots, M$ do For $k = 1, \dots, N$ do

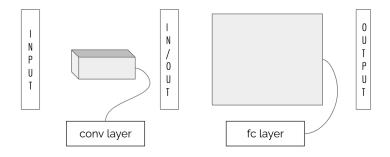
- Pick a layer $\ell \in \{1, \dots, L\}$ at random,
- Propose $\tilde{\mathbf{w}} \sim p(\cdot | \mathbf{w}_k)$,

• Accept $\mathbf{w}_{k+1} = \tilde{w}$ with proba:

$$\rho = \frac{\exp\{-\lambda \sum_{t \in \mathcal{I}_m} \ell(y_t, g_{\tilde{\mathbf{w}}}(x_t))\}}{\exp\{-\lambda \sum_{t \in \mathcal{I}_m} \ell(y_t, g_{\mathbf{w}_k}(x_t))\}} \frac{\pi(\tilde{\mathbf{w}})}{\pi(\mathbf{w}_k)}.$$

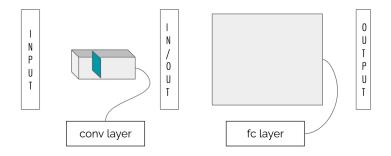
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example on a simple CNN

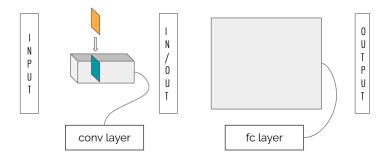


◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

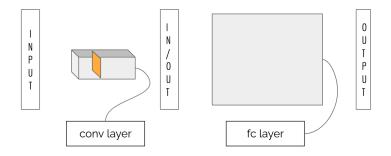
Example on a simple CNN



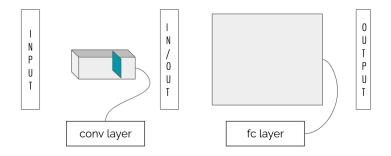
Example on a simple CNN



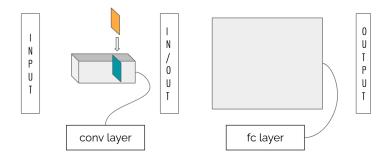
Example on a simple CNN



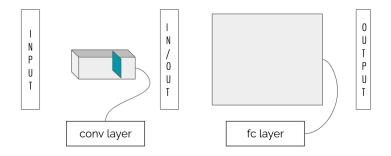
Example on a simple CNN



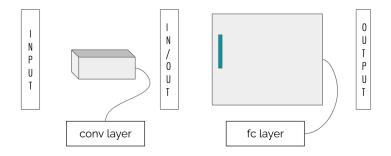
Example on a simple CNN



Example on a simple CNN

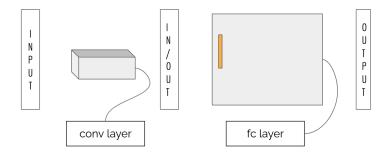


Example on a simple CNN



Greedy (RJ)-MCMC algorithm

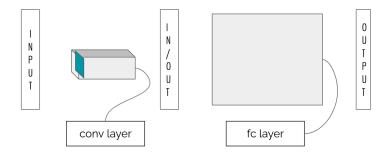
Example on a simple CNN



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Greedy (RJ)-MCMC algorithm

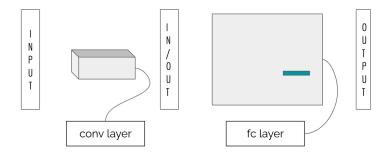
Example on a simple CNN



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

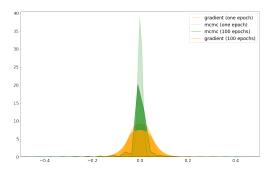
Greedy (RJ)-MCMC algorithm

Example on a simple CNN



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

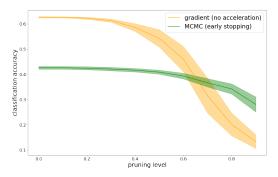
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



- CNN with 60,000 params,
- SGD with batch size 256 and no acceleration,
- MCMC with 200 iterations by epoch.

A D > A P > A D > A D >

э

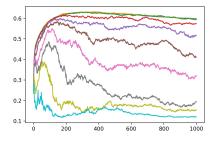


- CNN with 60,000 params,
- SGD with batch size 256 and no acceleration,
- MCMC with 200 iterations by epoch.

stochastic gradient descent

A D > A P > A D > A D >

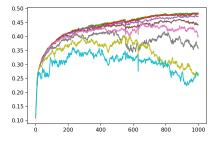
æ



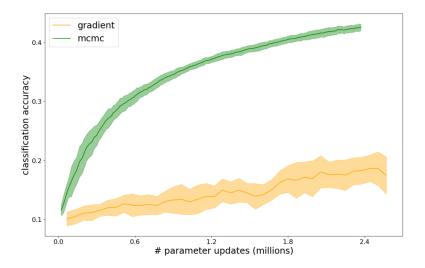
mcmc algorithm

(日)

э



gradient descent VS mcmc



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlines

Gentle start with gradient and mirror descent

2 First application: how to learn sparse deep nets

3 Extension to the power metrical task problem

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

How to consider a new metrical task ?

• add a cost to the loss function \Rightarrow possible by non-differentiable programming,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- add a cost to the loss function \Rightarrow possible by non-differentiable programming,
- put it directly at the core of the online decision,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- add a cost to the loss function \Rightarrow possible by non-differentiable programming,
- put it directly at the core of the online decision,
- link with metrical task systems and power management.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- add a cost to the loss function ⇒ possible by non-differentiable programming,
- put it directly at the core of the online decision ,
- link with metrical task systems and power management.

Mirror descent solves:

$$\rho_{t+1} := \arg\min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \eta \langle \nabla f(\rho_t), \rho \rangle + \mathcal{B}_{\Phi}(\rho, \rho_t) \right\}.$$

Mirror descent solves:

$$\rho_{t+1} := \arg\min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \eta \langle \nabla f(\rho_t), \rho \rangle + \mathcal{B}_{\Phi}(\rho, \rho_t) \right\}.$$

•
$$\Phi(x) pprox \|x\|^2 \Rightarrow$$
 no localization,

Mirror descent solves:

$$\rho_{t+1} := \arg\min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \eta \langle \nabla f(\rho_t), \rho \rangle + \mathcal{B}_{\Phi}(\rho, \rho_t) \right\}.$$

•
$$\Phi(x) \approx \|x\|^2 \Rightarrow$$
 no localization,

•
$$\Phi(\rho) = \int \rho \log \rho \Rightarrow$$
 sparsity,

Mirror descent solves:

$$\rho_{t+1} := \arg\min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \eta \langle \nabla f(\rho_t), \rho \rangle + \mathcal{B}_{\Phi}(\rho, \rho_t) \right\}.$$

•
$$\Phi(x) \approx \|x\|^2 \Rightarrow$$
 no localization,

•
$$\Phi(
ho) = \int
ho \log
ho \Rightarrow$$
 sparsity,

$$\rho_t \xrightarrow{\text{Joules?}} \rho_{t+1}$$

Mirror descent solves:

$$\rho_{t+1} := \arg\min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \eta \langle \nabla f(\rho_t), \rho \rangle + \mathcal{B}_{\Phi}(\rho, \rho_t) \right\}.$$

•
$$\Phi(x) \approx \|x\|^2 \Rightarrow$$
 no localization,

•
$$\Phi(\rho) = \int \rho \log \rho \Rightarrow$$
 sparsity.

$$\rho_t \xrightarrow{\text{Joules?}} \rho_{t+1}$$

Optimal transport

Consider the sequence $(\rho_t)_{t=1}^T$ defined as:

$$\rho_{t+1} := \arg \min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \mathbb{E}_{g \sim \rho} \bar{\ell}(g, z_t) + \frac{\mathcal{W}_{\alpha}(\rho, \rho_t)}{\lambda} \right\},$$
(3)
where $\bar{\ell}(g, z_t) = \ell(g, z_t) + \delta_t(\alpha, \lambda).$

Optimal transport

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the sequence $(\rho_t)_{t=1}^T$ defined as:

$$\rho_{t+1} := \arg \min_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \mathbb{E}_{g \sim \rho} \bar{\ell}(g, z_t) + \frac{\mathcal{W}_{\alpha}(\rho, \rho_t)}{\lambda} \right\}, \quad (3)$$

where $\bar{\ell}(g, z_t) = \ell(g, z_t) + \delta_t(\alpha, \lambda)$. Idea : replace $\mathcal{B}_{\Phi}(\rho, \pi)$ by a $\mathcal{W}_{\alpha}(\rho, \pi)$, strictly convex perturbation of the original optimal transport defined as:

$$\mathcal{W}_{\alpha}(\rho,\pi) := \min_{\Lambda \in \Delta(\rho,\pi)} \left\{ \int_{\mathcal{G} \times \mathcal{G}} C(g,g') d\Lambda(g,g') - lpha \mathcal{H}(\Lambda)
ight\},$$

for some $\alpha > 0$ and cost $C : \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$.

Optimal transport theorem

Theorem

Assume \mathcal{G} is finite and let $T, \lambda > 0$. Let z_1, \ldots, z_T deterministic data. Then $\forall \pi \in \mathcal{P}(\mathcal{G}), (\rho_t)_{t=1}^T$ based on (3) is such that :

$$\sum_{t=1}^{T} \mathbb{E}_{g \sim \Pi(\rho_t)} \ell(g, z_t) \leq \inf_{\rho \in \mathcal{P}(\mathcal{G})} \left\{ \mathbb{E}_{g \sim \rho} \sum_{t=1}^{T} \bar{\ell}(g, z_t) + \frac{\mathcal{W}_{\alpha}(\rho, \pi)}{\lambda} \right\} + \Delta_{\mathcal{T}, \lambda},$$

where $\Delta_{\mathcal{T},\lambda} > 0$ and $\Pi : \mathcal{P}(\mathcal{G}) \to \mathcal{P}(\mathcal{G})$ is defined as:

$$d\Pi(\rho_t)(g) = A(\rho_t)\mathbb{E}_{g'\sim\rho_t}\exp\left\{-\frac{C(g,g')}{\alpha}\right\}.$$

Proof.

• new mixability condition $\exists \delta_{\lambda,\alpha} : \forall \pi, \exists \Pi(\pi) : \forall z$,

$$\mathbb{E}_{g' \sim \Pi(\rho)} \ell(g', z) \leq \mathbb{E}_{g' \sim \Pi(\rho)} \min_{\rho} \left\{ \mathbb{E}_{g \sim \rho} \overline{\ell}(g, z) + \frac{\mathcal{W}_{\alpha}(\rho, \pi)}{\lambda} \right\},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $ar{\ell} = \ell(g,z) + \delta_{\lambda,lpha}(g,g').$

Proof.

• new mixability condition $\exists \delta_{\lambda,\alpha} : \forall \pi, \exists \Pi(\pi) : \forall z$,

$$\mathbb{E}_{g' \sim \Pi(\rho)} \ell(g',z) \leq \mathbb{E}_{g' \sim \Pi(\rho)} \min_{
ho} \left\{ \mathbb{E}_{g \sim
ho} \overline{\ell}(g,z) + rac{\mathcal{W}_{lpha}(
ho,\pi)}{\lambda}
ight\},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $\bar{\ell} = \ell(g, z) + \delta_{\lambda, \alpha}(g, g')$.

• generalized PAC-Bayesian bound with \mathcal{B}_{Φ} ,

Proof.

• new mixability condition $\exists \delta_{\lambda,\alpha} : \forall \pi, \exists \Pi(\pi) : \forall z$,

$$\mathbb{E}_{g' \sim \Pi(\rho)} \ell(g', z) \leq \mathbb{E}_{g' \sim \Pi(\rho)} \min_{\rho} \left\{ \mathbb{E}_{g \sim \rho} \overline{\ell}(g, z) + \frac{\mathcal{W}_{\alpha}(\rho, \pi)}{\lambda} \right\},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $\bar{\ell} = \ell(g, z) + \delta_{\lambda, \alpha}(g, g')$.

- generalized PAC-Bayesian bound with \mathcal{B}_{Φ} ,
- applied for $\Phi(\cdot) = \mathcal{W}_{\alpha}(\cdot, \nu)$.

Corollary

Corollary

Let $\pi = \delta_{g_n^{\star}}$ the Dirac measure on the unique minimizer:

$$g_{\eta}^{\star} := \arg\min_{g \in \mathcal{G}} \left\{ \operatorname{Err}_{i} + \eta \operatorname{Env}_{i} \right\}.$$

Consider minimization (3) with $C(g_i, g_j) := C(\text{Env}_i, \text{Env}_j)$ we have:

$$\sum_{t=1}^{T} \mathbb{E}_{\hat{g}_t \sim \tilde{\rho}_t} \ell(\hat{g}_t, z_t) \leq \min_{g \in \mathcal{G}} \left\{ \sum_{t=1}^{T} \bar{\ell}(g, z_t) + \frac{C(g, g_{j^\star})}{\lambda} \right\} + \Delta_{\mathcal{T}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Let X a finite metric space of size n. At every time step t = 1, ..., T:

- the player receive a task function $c_t: X \to \mathbb{R}_+$,
- moove from state s_{t-1} to s_t and pay the movement cost $d(s_{t-1}, s_t)$ and the service cost $c_t(s_t)$.

Let X a finite metric space of size n. At every time step t = 1, ..., T:

- the player receive a task function $c_t: X \to \mathbb{R}_+$,
- moove from state s_{t-1} to s_t and pay the movement cost $d(s_{t-1}, s_t)$ and the service cost $c_t(s_t)$.
- \Rightarrow Many applications like power management,

Let X a finite metric space of size n. At every time step t = 1, ..., T:

- the player receive a task function $c_t: X \to \mathbb{R}_+$,
- moove from state s_{t-1} to s_t and pay the movement cost $d(s_{t-1}, s_t)$ and the service cost $c_t(s_t)$.
- \Rightarrow Many applications like power management,
- \Rightarrow Link with PEA,

Let X a finite metric space of size n.

At every time step $t = 1, \ldots, T$:

- the player receive a task function $c_t:X o\mathbb{R}_+$,
- moove from state s_{t-1} to s_t and pay the movement cost $d(s_{t-1}, s_t)$ and the service cost $c_t(s_t)$.
- \Rightarrow Many applications like power management,
- \Rightarrow Link with PEA,
- \Rightarrow New competitive ratios instead of regret (OPT is mooving)

Let X a finite metric space of size n.

At every time step $t = 1, \ldots, T$:

- the player receive a task function $c_t:X o\mathbb{R}_+$,
- moove from state s_{t-1} to s_t and pay the movement cost $d(s_{t-1}, s_t)$ and the service cost $c_t(s_t)$.
- \Rightarrow Many applications like power management,
- \Rightarrow Link with PEA,
- \Rightarrow New competitive ratios instead of regret (OPT is mooving)
- \Rightarrow Optimal bound for stochastic algorithm is an open problem.

Concluding remarks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- a new optimizer based on theoretical framework,
- uses sparsity to get robustness to pruning,
- extend previous PAC-Bayesian approach to Bregman and Optimal Transport.

Concluding remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

- a new optimizer based on theoretical framework,
- uses sparsity to get robustness to pruning,
- extend previous PAC-Bayesian approach to Bregman and Optimal Transport.

Open problems

- scale this new optimizer to imagenet,
- propose a power managed deep learning method at inference,
- introduce step by step the electricity constraints into the online decision.

THANK YOU

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- AIPowerMeter software,
- · More materials on ACML workshop organized here,
- Mathematical contents [1] for sparsity and [2] for Bregman and Optimal Transport,
- Website of the whole project.

THANK YOU

- AIPowerMeter software,
- · More materials on ACML workshop organized here,
- Mathematical contents [1] for sparsity and [2] for Bregman and Optimal Transport,
- Website of the whole project.

