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Figures

© 3 keynotes

o 21 lectures
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Structure

Institute for Research Development, Training and Advice

0500
OO

AlCoB

International Conference on
Algorithms for Computational

«

BigDat

International School on Big Data

>

<

DeepLearn

International School on Deep
Learning

Biology
LATA SLSP TPNC
International Cor I c & onthe

Language and Automata Theory

Simon Lebeaud

Statistical Language and Speech

Theory and Practice of Natural

GreenAl
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Presentation

Lecturer: Michalis Vazirgiannis
Theme: Graph Mining - generators & community detection
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Applications fields
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Graph types

Overview of graph types : directed, unidirected, complete, tree,
bipartite graphs...

Isomorphism = best similarity between 2 graphs
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Some Methods
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Graph Generation

Aim: simulate graph data with same distribution / patern

* Regarding dregree law
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Aim: simulate graph data with same distribution / patern

Regarding dregree law

frequency

Cy 1

k degree
We visualise number of neighbors for each node in graph

Regarding subpatern (Kronecker model)
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Graph Generation

X

X2

X3

Graph G; Graph G, =G; X

G;
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based on number of triangles

based on number of edges
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Clustering

¢ based on modularity (Louvain, Newman-Girvan)

© based on deeplearning (auto-encoder & node embedding)
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Embedding & Similarity study

Aim
Create Embedding vectors for nodes, keeping proximity and
similarity edges between them.
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Aim

Create Embedding vectors for nodes, keeping proximity and
similarity edges between them.

How to?

We could take the adjacency matrix as embedding but inner
product between them would produce a lot of 0.

o1 ... 0
1 0 ... 1
o1 ... 0
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Embedding & Similarity study

Many methods:
© based on kernel
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Embedding & Similarity study

Many methods:

¢ based on kernel
Better than Deeplearning Methods but not scalable on big
data.
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Embedding & Similarity study

Many methods:

¢ based on kernel
Better than Deeplearning Methods but not scalable on big
data.

© based on deep learning
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Deeplearning based embedding
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Laplacian eigenmaps

Early Method: matrix-factorization using Laplacian eigenmaps
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Laplacian eigenmaps

Early Method: matrix-factorization using Laplacian eigenmaps

© Laplacian eigenmaps projects two nodes i and j close to each
other when the weight of the edge between the two nodes A;;
is high
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metrics Trustworthiness Medicine, high physics and V
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Early Method: matrix-factorization using Laplacian eigenmaps
Laplacian eigenmaps projects two nodes i and j close to each
other when the weight of the edge between the two nodes A;;
is high

y* = argmin E:(yZ —y;)2 Ay (1)

With A;j the edge weight between i and j.
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DeepWalk

Recent Method: inspired by Language Modeling DeepWalk
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DeepWalk

Recent Method: inspired by Language Modeling DeepWalk

* Employ random walks to capture structural relationships
between nodes. Each sample can be considered as a
"sentence" of a document in NLP.
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DeepWalk

Recent Method: inspired by Language Modeling DeepWalk

* Employ random walks to capture structural relationships
between nodes. Each sample can be considered as a
"sentence" of a document in NLP.
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Why Random Walk?

Why Random Walk?

F{gguency of Vertex Occurrence in Short Random Walks 108 Frequency of Word Occurrence in Wikipedia
s
10* 10
@ 10*
810° 3
T S
$ =10° \ 1
s
s 10? *
. 102
.
10 10t
10" r— 10°
0% 100 100 10 10t 10 10° 10° 100 100 100 10 10° 10° 107

Vertex visitation count Word mention count

(a) YouTube Social Graph (b) Wikipedia Article Text
RandomWalk nodes distribution is the same as words in Wikipedia
article.

GreenAl U.P.P.A.
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DeepWalk

Next step: Use skipgram to generate embedding
© two sampling strategies, to capture:
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DeepWalk

Next step: Use skipgram to generate embedding
© two sampling strategies, to capture:
¢ structure: depth-first sampling (DFS)
© local similarity: breadth-first sampling (BFS)
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Next step: Use skipgram to generate embedding
two sampling strategies, to capture:

structure: depth-first sampling (DFS)
local similarity: breadth-first sampling (BFS)
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DeepWalk
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Other Methods

It exists also
© GraRep
© Line
* SDNE

Matthieu Francois - Simon Lebeaud - Nicolas Tirel GreenAl U.P.P.A.
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Other Methods

0O000000e

(a) SDNE (b) LINE

(c) DeepWalk (d) GraRep

Matthieu Francois - Simon Lebeaud - Nicolas GreenAl U. A.
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© Biometrics Trustworthiness
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® Proofing face recognition for
security control (public
security, border control,
building access, face
purchase...)
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Proofing face recognition for
security control (public
security, border control,
building access, face
purchase...)

® Remove ubiquitous presence
of deepfake and preventing
rapid dissemination of “fake
news”
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Digital Attacks Physical Attacks
|
i 1 I
Adversarial Faces Digital Manipulation Spoofs
[
¥ ' ¥ I T 1 T T 1

Attr. Face

Gradient:Leaming Warping  Id. SWP: Esxv% . Manip. , Synth.

Print  Replay Wearable 3D  Makeup Partial
i : Mask Mask

Half Cosmetic | FunnyEy

A7

DeepFake! PaperCut

FaceSwaﬁFaceZFa STGAN StyleGAN

Mannequin Obfusc.

DeepFool : Semantic

ransparent Silicone |Imperson. iPaperGlas

HEEEA
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Countering Physical Attacks
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8D Fitting Depth Map

" Depth Map

Depth Estimation

rPPG Estimation
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CNN is trained to generate a
spoof trace image

Spoof is considered as an
added layer to your original
image

If we can generate the spoof
layer from a false image then
we are capable of taking it

Of the image and then live/spoof real/fake
"recover" the original image
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Countering Digital Attacks
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Digital Attacks Physical Attacks
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positive

Xin et al. Exposing deep fakes using inconsistent head poses
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Detect images altered by the blending of a new face on the original

Real Fake
=

Input images

Face X-rays

Li et al. Face X-ray for more general face forgery detection
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Entire face
synthesis

Expression

Identity | Attribute
swap

manipulation

swap

Fake Real ‘
Type

Input -
Sample

-
-

.
' Binary ) Real Fake Fake
Prediction

Map

| Attention ‘

Dang et al. On the Detection of Digital Face Manipulation
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1) Supervised leamning

. Lomap 1 ii) Weakly supervised Letassifier
ek ~‘ learning \
111) Unsupervised learning
| MAM Map ! \
.+ N \
Eouv FC —@l N \
g LEBLED Sigmoid i ~Real
] o g [
iy “*Fake
Reg. Map

Dang et al. On the Detection of Digital Face Manipulation

Guimaraes

Weath
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Image Encryption Recovery of template Jl
I

Real image

Pairawiso set Recovery loss
distribution
loss.

Framework to proactively counter digital spoofing
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0.72 Enrolled
| Face =

Obfuscation attack: Falsely
reject a genuine subject

¥eo
yolew-uop|

Adversarial Face
(a) Obfuscation Attack

Impersonation attack: falsely
match to an impostor

b. ( \
su JeCt AdvFaces [—+
Solutions: M| °F
@ 0O
. =
Detection
P u r|f|cat|on Target's Probe Targt‘s Gallery
(b) Impersonation Attack
Robustness

AdvFaces: Adversarial
Face Synthesis
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Cluster each types of attacks with high similarities to form
groups

Train a multi-branch model each branch trying to do
classification for a cluster of attacks

Fuse the classification for each cluster

4
k-Means. [
- - @9 | cici-ing oy
s T Partitions ' s
1

All attacks JointCNN

Stage 1: Automatic Construction of Auxiliary Tasks

JointCNN: 53.19% TDR

DeeplLearn School - Guimaraes 46 / 80
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Proposed UniFAD

Aape. Task 1
Innrl

ol - e o o o o

Stage 2: Multi-task Learning

Figure 11: Debayan Deb, Xiaoming Liu, Anil Jain, Unified Detection of
Digital and Physical Face Attacks

Matthieu Francois - Simon Lebeaud - Nicolas Tirel GreenAl U.P.P.A.

DeeplLearn School
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TDR (%) @ 0.2% FDR  Year Proposed For Adv. Dig. Man.  Phys. Overall Time (ms)
-% FaceGuard 2020 Adversarial 99.91 22.28 00.58 29.64 01.41
?,) FFD 2020 Digital Manipulation 09.49 94.57 01.25 34.55 11.57
e[ SSRFCN 2020 Spoofs 00.25 00.76 93.19 22.71 02.22
~§ MixNet 2020 Spoofs 00.36 09.83 78.21 21.12 12.47
FaceGuard 2020 Adversarial 99.86 41.56 04.35 56.69 01.41
2 FFD 2020  Digital Manipulation 76.06 091.32 87.43 68.25 11.57
S| SSRECN 2020 Spoofs 08.23 27.67 89.19 43.26 02.22
é One-class 2020 Spoofs 04.81 45.96 79.32 39.40 07.92
MixNet-UniFAD 2021 All 82.33 91.59 94.60 90.07 12.47
Cascade - - 88.39 81.98 69.19 77.46 05.16
E Min-score — — 03.65 11.08 00.43 07.22 16.14
8| Median-score - - 10.87 42.33 47.19 39.48 16.12
| Mean-score - - 14.53 47.18 61.32 38.23 16.12
5| Max-score - - 85.32 61.93 56.87 73.89 16.13
2| Sum-score - - 74.93 58.01 50.34  69.21 16.11
= LightGBM - - 76.25 81.28 88.52 85.97 17.92
Proposed UniFAD 2021 All 92.56 97.21 98.76 94.73 02.59

Debayan Deb, Xiaoming Liu, Anil Jain, Unified Detection of
Digital and Physical Face Attacks

DeeplLearn School - Guimaraes
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Sofia Vallecorsa- Generative Models in High Energy Physics:
Examples from CERN
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Medicine, high physics and Weath
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Generative models

Examples in science

—
EmE=E
[ orere— -~
- EmEEs
e Ld
L=
€) Saguanca genaramen A
-
=
=
R
=
=
. - " " ..
Ayala, Alexis, et al. “Loosely Conditioned Emulation of Global Climate Models With -
Generative Adversarial Networks." arXiv:2105.06386 (2021). e
Wu, Zachary, et al. "Protein sequence design with deep generative ] --n—n-—-‘l.n
models.* Current opinion in chemical biology 65 (2021): 18-27

CERN
openlab

Matthieu Francoi: on Lebeaud - Nicolas

DeeplLearn School - Guimaraes
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Medicine, high physics and Weath
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Replace with DNN

Accelerating the training
process

* Introducing techniques to parallelise training

iR w0 oW

Data parallelism

. —_—
* Compute gradients on several batches Pipsiing Paraliel
independently _
https://www.microsoft.com/en-
*  Update the model synchronously or o odel
asynchronously training-for-everyone/
* Model Par It Hybrid
P " Sealing to a Trillion Parameters
* Use reduced precision representation (INT8, [T

BF16, ..) sy
Extreme parallelism using combined strategies
and SGD algorithm optimisation

* DeepSpeed and ZeRO-2 on Microsoft Azure

&

g
Throughput (PFLOPS)

200
000
800
el a2
00

x

Model parameters (8)
5

160 20 s 0 00
Number of GPUS

N ——

Matthieu Francois - Simon Lebeaud - Nicolas Tirel GreenAl U.P.P.A.
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o - w//uwuou COM2022102/9004 Hews:

. 5
S -carbon-footprint-of.html.
8 ™ 747
Sustainable Al i - .
g8 .
a
Al inference more energy efficient than classical g,: "
algorithms g
Energy cost of Al training can be high gz
ES x
The community is defining best practices! E 83
k 2
« Efficient Al architectures can reduce computation by 3x— 'E B, ¢
10x. £ i e

« Al-optimized processors vs general-purpose can improve
energy efficiency by 2x-5x2. |

+ Cloud computing vs on-prem reduces energy usage by Y
1.4x-2x $an
Efficient training strategies
« Self-supervision, few-short learning, pre-training 1

R Coredomo, VCHFP2021?

ERN

BUAIBECrbon Footprint of Machine Lasrning Training Will Petesu, Then Shrink.” (2022).
2 Cardbuo, Renato, et al. "Accelerating GAN training using highly parallel hardware on public cloud.” EPJ Web of Confersnces. Vol. 281, EDP Sciences, 2021
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Monte Carlo
simulation

Detector response as images

Monte Carlo simulation of detector response is extremely
demanding in terms of computing resources

-> 50 % of LHC Computing Grid resources today

Interpret detector output as images

Sensors outputs become pixels in a image

Use computer vision techniques to interpret results Pixelized 3D image 3

Replace Monte Carlo approach with Generative Models

Interfacing DL to standard software is not trivial! “ '. . . . ;

. -

DeeplLearn School - Guimaraes
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Medicine, high physics and Weath
oooooe

The first model:
CaloGAN

Learning Particle Physics by Example:
Location-Aware Generative Adversarial Networks for
Physics Synthesis

Luke e Ohir, Michals. aganid””, snd Benjamin Nachmam'
e Brely Netionl Zabreery, | Cycbees B, Bk, €1, 415, LA
et o oy, T sy, o o, CT 0538, 054
B,

ABGERAT: W prosie b batwren gt madelicg (s e Mo Learaing ety
o st e in i Ery Fariek Physes by oo ol Gt
Niverar esmatins of

el (GAN) b 5 ho ol of b

o . e, g o ot b provide  nare eplec vldacien
wmmmwm i £ 1A ot et o s ol T e g

c.mGAM Simulating 3D High Energy Particle Showers in Mnmmw
romaguetic Calorimeters with Generative Adversarial Netwo

Michela. Puganini ' * * iy Ollmm,“ * and Benjarnin Nachmuan? ¢
et f 1 Uity New Hoven, CT 06535, USA
v ety Nt Laoretors B €A, 5470, US4
(Dused: Jamary 1, 2018)
> precs mocalng of st paril noraciess 4! popagain (g mater
w.mm\wabv ndvanocncat of paclar and arice physicsnearches and preciion measareELs,
o ooy epemiv e L sntion ipee f & rpin exprit s e
LHC) i

A evolition of e s
e st i echmiqus basd o gt el notworks (AN W oy thess
el et

an achieve tpecdup factons comparalie 8 o better han exeting full imalation tacknigues

CPU (L00x mx]-imlmnmm’www~lw Thes ace sl o chie

oo, bt oo sk cu eproden ety of

et harged plans. This reprasets o ignifeant stepping
wilaicn that could s i

Matthieu Francois - Simon Lebeaud - Nicolas Tirel

DeeplLearn School - Guimaraes

GreenAl U.P.P.A.
55 / 80



gh physics and Weath

@®000000

Lucila Ohno-machado - Use of Predictive Models in Medicine
and Biomedical Research
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Medicine, high physics and Weath
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Introduction

Patient
Interaction

Decision Support Tools
puter Data Organization Tools

Clinical Data Warehouse

Data De-ldentification
Privacy Technology
Decision Analysis Fault-Tolerant Led

Evaluation Methods BIOIII‘IfOI‘I'I'Iat.]cS
(Ohno-Machado) Various ‘omics
Systems Biology

Predictive Modeling
Evaluation Methods

Data Analysis

Statistics
Machine Learning Narrative text

GreenAl
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Is it ethical to share?
People have not been
explicitly asked and
don’t know who is
sharing what

DeeplLearn School - Guimaraes

1

Is it ethical not to
share? New
discoveries and
acceleration of science
depend on sharing

Could people
choose?

Is it practical?

What if a massive
number of people
withdraw their data?
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Privacy vs. Data Sharing

* Personalized medicine depends on big data

* Getting enough data to study rare diseases is
already difficult without thinking of privacy risks

* 1t is difficult to quantify the privacy risk and
potential benefits

* Streamlined access-controlled sharing: quickly
determine who will use the data and why, and
provide controlled access

* Authenticate Users & Authorize Users
* Monitor Use

DeeplLearn School - Guimaraes
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People think re-identification means finding
the names (of everyone) in the database

biometric  diagnosis income
Lisa ABDSFHG pregnancy 60k
Mike BQEHGKK rare disease 1 100k
Alice WOEIMIV  depression 20k

A B diagnosis income
Lisa 10 20 pregnancy 60k
Mike 10 21 rarediseasel 100k
Alice 11 20 depression 20k

DeeplLearn School - Guimaraes 60 / 80
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But they forget someone can target an individual

biometric| diagnosis  income
ABDSFHG| pregnancy 60k
BQEHGKK| rare disease 1 100k
WOEIMIV| depression 20k

| know
something A B diagnosis income But | want to
about the know more...

10 20 | pregnhancy 60k
10 21 |raredisease 1 100k
11 20 | depression 20k

target person

A B diagnosis income

10 20 | pregnancy 60k

10 21 |raredisease 1 100k

11 20 | depression 20k k anonymity,
10 20 | pregnancy 20k bR ==
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Full ASR

ASR System Overview
- .

This task is commonly approached by breaking it down into subproblems
*  Wake Word Detection: identifying when the user is speaking to the assistant

* Acoustic modeling: transforming the raw audio signal into units of spoken
language called “phonemes” (these usually map directly to sub-word tokens)

* Pronunciation modeling: mapping sequences of phonemes into words
¢ Language modeling: assign probabilities to word sequences

* Decoding: determine which word sequence is most likely to represent to the
input audio signal

Matthieu Franco mon Lebeau GreenAl U.P.
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Key word selection

Wake Word Detection

* The first step in the ASR pipeline for digital assistants is Wake Word Detection

« This is a special case of Keyword Spotting (KWS), a larger subfield of ASR, with
some unique challenges

+ It has to be done in real time
* A high latency response is perceived as a False Negative
* It has to work with very limited computational resources

* These models need to be able to run on the device itself (i.e., they are
not run in the cloud)

* It needs to have high Precision

* False Positives lead to a lot of user friction

Matthieu Fra imon Lebeaud - Nicolas Tirel
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Wake Word Models: DeepKWS
------ — I e — -

* The DeepKWS model used for Wake Word detection was released in 2014:
Small-Footprint Keyword Spotting Using Deep Neural Networs

Vg
\OR
A:

S/,

0

(i) Feature Extraction (ii) Deep Neural Network

(iiiy Posterior Handling

Fully-connected feedforward neural
network with three hidden layers
(128d) with ReLU activations and a
softsax output layer

Reference: Small-Footprint Keyword Spotting Using Deep Neural Networs

106
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Wake Word Detection as Image Classification

¢ The input LFBE features to the DeepKWS model can be thought of as an image!

* This means we can try to use image classification techniques to try and solve the
Wake Word detection problem.

* Image Classification = Convolutional Neural Networks!

LBFE Features

Matthieu Fra imon Lebeaud - Nicolas Tirel GreenAl U. A.
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Wake Word Detection Models using CNNs

+ It was shown that using Convolutional Neural Networks (CNNs) can improve Wake
Word detection even more (Google showed a ~40% improvement over DeepKWS).

* These models are attractive in a limited resource setting as the computational
complexity can be easily controlled by adjusting various hyperparameters (e.g.,
kernel size, pooling size, and stride)

+ The model below is the word-level keyword spotter (WL CNN)

Mexposing 243 Cor@ Tl stide: 31 Max poaling: 142

Fousa FGz i FCEM
£

= e

82005 1oaiBxtiz 4

Input LFBE features 5 conv layers References Convolutional Neural Networks for Small-footprint Ke» rd Spottin
Accurate Detection of Wake Word Start and End Using a CNN

Matthieu Frang Simon Lebeaud - Nicolas Tirel
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Challenges

Wake Word Detection Challenges
—— . e I e

* The models need to be able to run with very limited computational resources (in
terms of compute power, available memory, and power constraints).

* Model quantization (even down to 4 bits!), knowledge distillation, and pruning
are all effective ways build effective models in this setting.

+ The Wake Word needs to be detected in a far-field, noisy environment.

* Robustness training is key! Augmenting training data with noise perturbations
added to the input signals is a common way to improve performance.

* Automatic Gain Control (AGC) can applied to the input where the signal is
amplified whenever speech is detected.

* Beam forming (using a microphone array to identifying the direction of the
sound) can also be used to identify background noise.
*  When the direction of the signal jumps round = it’s probably noise

A comprehensive reference on KWS;.z

Matthieu Franco mon Lebeaud - GreenAl U.P.
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Atmospheric radiation budget

Incoming solar
radiation
100%

Absorbed by air,
H,0, ozone,
clouds, dust

Absorbed by
ozone, cloi

Reflected
by surface a7%

Conduction
Longwave radia

https;, X books.pub; loads, sites/7,/2017,/01/figure8.1.1 @] Martin Schultz | %
ps://rwu.pressbooks.pub/app/uploads,/sites/ 7/ /01/figure Png ane ‘ JULICH

Forschungszontrum




pring Graph Lectu orthiness Medicine, high physics and Weath

Global weather observations: vertical profiles
According to WMO (~1,300 sites)
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One application, weather forecasting

Machine learning approaches to weather forecasting

Forecast problem

x(t): State of the atmosphere at time ¢
x(t + At): Forecast of atmospheric state at lead time At

x(t) — x(t + At)

o) :IIIa;:nZSchunz ‘JJULICH

Forsehungszentrum
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One application, weather forecasting

NN Weather Forecasting

Precipitation nowcasting with radar data

T + 30 min T + 90 min

30, 60, and 90 minute forecasts of a
complex precipitation event over

Obs. Scotland (24 June 2019, 15:15 UTC)

Observations

In a case study, 90% of
GNN meteorologists chose output
from generative model over
other methods.
Ravurl et al. (2021), Nature https://dol.org/10.1038,/541586-021-03854-2 s ;:::5':""'“ d ’ J U LICH
Forschungszentrum
Matthieu Franco mon Lebeau
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Questions (21 answers)

How much are you aware of climate change?

Is climate change caused by humans?
Do you know IPCC?

Do you know Labos 1Point5/carbon footprint calculator?

What was your main means of transport to go to Guimaraes?

Matthieu Francois - Simon Lebeaud - Nicolas Tirel GreenAl U.P.P.A.
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Natural change ?
B

5,50

90,5%

Figure 13 Is climate change caused by humans ?
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IPCC

333%

Figure 14: Do you know IPCC 7
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How much do you know about IPCC ?

28,6%

28,6%

Figure 15: How much do you know about it ?

Matthieu Francois - Simon Lebeaud - Nicolas Tirel GreenAl U.P.P.A.
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Main mean of transports

c
19,0%

81,0%

Figure 16: What was your main means of transport to go to Guimaraes ?
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Gender
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Figure 17: Gender distribution
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