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Ibai Begi: Fish pass
counting with uni/multi
camera system

SICAAV: Eel and Elver
counting on a ramp

Currently running on 25 sites
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Build a fish recognition tool to improve fish tracking and sequence
refinement to facilitate migratory studies.

® Detect and recognize fish species in a fish pass without
missing any big migratory species,
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Build a fish recognition tool to improve fish tracking and sequence
refinement to facilitate migratory studies.
Detect and recognize fish species in a fish pass without
missing any big migratory species,
Work with lighter model as the solution could be embedded to
do on-site detection,
® |mprove the counting tool and his Ul to synergize operators
checking and data improvement.
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Challenges

e Complexity of imagery (water quality, multiple output systems,
fish similarities...) that defers from one site to another,
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Challenges

¢ Complexity of imagery (water quality, multiple output systems,
fish similarities...) that defers from one site to another,

¢ Utilize/adapt state of the art object detection/recognition
systems,

® Work in cooperation with migratory study associations to
understand their need and facilitate their work,
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Complexity of imagery (water quality, multiple output systems,
fish similarities...) that defers from one site to another,

Utilize/adapt state of the art object detection/recognition
systems,

Work in cooperation with migratory study associations to
understand their need and facilitate their work,

® Deploy the new tool on each video counting system Hizkia
has.
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One-Stage VS Two-Stage Approach
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One-Stage VS Two-Stage Approach

Detection generator

Dcnmmn
[Jroen

Input Image Feature extractor Input Image Feature extractor

(a) Two-stage Faster R-CNN (b) One-stage RetinaNet

Figure 8: Example of One and Two Stage Architecture
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State of the Art
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Performance Comparison

MS COCO Object Detection

EfficientDet (D0-D4) real-time

YOLOv4 (ours)

ASFF*

—4—YOLOv4 (ours)
—a—YOLOV3 [63]
36 | —m— EfficientDet [77]
4y |—#—ATSS [94]

—4— ASFF* [48]

~® CenterMask* [40]

YOLOv3

10 30 50 e %0 110 130
FPS (V100)

Figure 9: Object detection Benchmark
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Why Yolovb ?

® Fastest state of the art object detection network(Yolo5 can
operate at 100fps with 52% AP with V100)
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Why Yolovb ?

¢ Fastest state of the art object detection network(Yolo5 can
operate at 100fps with 52% AP with V100)

¢ Small Weight(14MB before pruning for Yolov5small)

® At equivalent speed Yolov5 has better accuracy ( +5% mAP
than EfficienDet at same FPS)

GreenAl U.P.P.A. x Hizkia
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3 years of video counting from different sites, with fish count and
taxon information.
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Video counting software
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Problem : The lack labeled data

We can extract the image +
labels as .txt from the bounding
boxes drawing tool embedded in

App

Detouring tool
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YOLO Ultralitics
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Ultralitics Yolovb

¢ ML enterprise-grade no-code provider
© Authors of the new open source YOLOV5 architecture

© Multiple size of architecture + efficient

«°>X>$

Nano Small Medium Large XlLarge
YOLOvSn  YOLOv5s  YOLOvSm YOLOvSI YOLOvSx
4MB_, 14MB_, . 41 MB, 89 MB_, 166 MB__,,
6.3ms, . 64ms, o 8.2ms, 10.1ms, 121ms,,
284 mAP_ 37T.2mAP_ 452 mAP__ 48.8 mAP__ 50.7 mAP_ .
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Results

Best Results on YOLOvbs

— Trained on 100 epochs
— 30 unchanged hyperparameters from Ultralitics
— With first dataset we can obtain a 83% accuracy

— Achieved inference time: 8.8ms
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Discussed Client Needs
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Feedback

- "We have no need for automatic recognition" ~ Migradour
- "Automatic recognition could able us to focus on more
interesting things" ~ Migado

Actual Needs

© Filter out video with uninteresting information

© Rely totally on the tool, or only verify unique set of labeled
fishes

© do not miss any migratory species
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Data to take into consideration

What do professionals look for while stripping data

Help for classification

© Seasonality

© Fish coat (can vary from regions and seasons)

Multiple taxon instances

Swim technique
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What's Next

® Add more labeled data do the dataset(research has shown
that we need at least 500 instances of each class to have the
best improvement in accuracy)
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What's Next

¢ Add more labeled data do the dataset(research has shown
that we need at least 500 instances of each class to have the
best improvement in accuracy)

® Pruning the model and test if model can be ran on real time
with machine on site
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Add more labeled data do the dataset(research has shown
that we need at least 500 instances of each class to have the
best improvement in accuracy)

Pruning the model and test if model can be ran on real time
with machine on site

® Binaries eels images from SICAAV, this could improve
detection precision

Fish Species Recognition and Tracking in a Fish Pass Context




to Object Detection 3 s nd Discussions What's Next

(o] Jelele]

Add more labeled data do the dataset(research has shown
that we need at least 500 instances of each class to have the
best improvement in accuracy)

Pruning the model and test if model can be ran on real time
with machine on site

Binaries eels images from SICAAV, this could improve
detection precision

® |mplement a dashboard to have direct results of detection.
The idea is to produce a mosaic of images with fish and their
class. The operator will only have to validate each image and
their classification.
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Yolov4: Optimal speed and accuracy of object detection.

On the performance of one-stage and two-stage object detectors
in autonomous vehicles using camera data.

Ssd: Single shot multibox detector.
Yolov3: An incremental improvement.

Efficientdet: Scalable and efficient object detection.
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