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Presentation

In the context of a call for tender, Prof En Poche proposes OSE?,
a tool for environmental awareness and education.

Choisis ton jeu ©
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® Propose a model that locates and recognizes found objects
with real-time tracking.
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© Propose a model that locates and recognizes found objects
with real-time tracking.

® Ensure the model is lightweight and fast in inference.
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Motivations
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© Propose a model that locates and recognizes found objects
with real-time tracking.

© Ensure the model is lightweight and fast in inference.

® Propose an embedded solution on a smartphone.
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Datasets

-+ 4500 images of TACO, an open image dataset of waste in
the wild with COCO format annotations

+ 600 images annotated with our annotation tools
17 class to predict

Model
YOLOv5s trained on 300 epochs and batch size 24
14 Mo for model size

Inférence time : 7ms on GPU (RTX 1080) and 160 ms on
CPU

54% mAP on top 10 classes
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Challenges

® ability to add object segmentation and improve inference time
Solution : use YOLOv7 with segmentation
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Challenges

© ability to add object segmentation and improve inference time
Solution : use YOLOv7 with segmentation

® improve performance in mAP
Solution : address the class imbalance problem
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YOLOV7, the fastest and most accurate real-time object detection
model

YOLOvV7: Trainable bag-of-freebies sets new state-of-the-art
for real-time object detectors released in July 2022 by
Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
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Trained using the MS COCO dataset without using any other
image datasets or pre-trained model weights, the authors have
introduced the following major changes.

In terms of YOLOV7 architecture

Extended Efficient Layer Aggregation Network (E-ELAN)
Model Scaling for Concatenation based Models

Trainable "Bag of Freebies"

Planned re-parameterized convolution
Coarse for auxiliary and fine for lead loss
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YOLOv7 architecture

Extended Efficient Layer Aggregation Network (E-ELAN).
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(a) VoVNet [39] (b) CSPVoVNet [79] (c) ELAN [1] (d) E-ELAN
Figure 2 E-ELAN and previous work on maximal layer efficiency

[Wang et al., 2022]
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YOLOv7 architecture

Model Scaling for Concatenation based Models.

Model scaling is performed to generate models that meet the
needs of different application requirements.

[Gom ] scaling up depth Computational block Tnmlllnn |
am _'g " Scaling up depth  Scaling up width
“Transition
[Conv ] Sealing up width

¢ < ¢ c M Cross Stage Merge
width also be changed Scaling up width

(a) ion-based model  (b) scaled-up ion-based model  (c) d scaling up depth and width for concatenation-based model

Figure 3. Model scaling for concatenation-based models.

[Wang et al., 2022]
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Trainable "Bag of Freebies"
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Re-parameterization is a technique used after training to improve
the model. It increases the training time but improves the
inference results.
There are two types of re-parametrization used to finalize models
Model level and Module level ensemble [Kukil and Rath, 2022].
Model level re-parametrization can be done in the following two
ways.

Different training data to train multiple model with the same

parameters.

The average of the weights of models at different epochs.
In module level re-parametrization, the model training process is
split into multiple modules.
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Planned Re-parameterized Convolution
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Figure 4 Planned re-parameterized model.

[Wang et al., 2022]

RepConvN
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Coarse for auxiliary and fine for lead loss

Tead Head Loss

Aux Head Loss ] (_AuxHead J—{ Loss | [ AuxHead }—{  Loss m‘im
A )
Cer

t
(@) Normal model (b) Model with auxiliary head (¢) Independent assigner  (d) Lead guided assigner (¢) Coarse-to-fine lead guided assigner

Figure 5: Coarse for auxiliary and fine for lead head label assigner.

[Wang et al., 2022]
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Application to trash detection
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class im

We performed a comparison of the two models on the 10 best
represented classes in our dataset.

Yolovs Yolov7

mAP YOLOV5 : 53%, mAP YOLOv7 : 74%
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@ Methods for addressing class imbalance
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A systematic study of the class imbalance problem in
convolutional neural networks
[Mateusz Buda, Atsuto Maki and Maciej A. Mazurowski]

In this study, the authors investigate the impact of class imbalance
on classification performance of convolutional neural networks
(CNNs) and compare frequently used methods to address the
issue. Class imbalance is a common problem that has been
comprehensively studied in classical machine learning, yet very
limited systematic research is available in the context of deep
learning.
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The authors mention two categories of methods for addressing the
class imbalance problem.
¢ Data-level methods that modify the distribution of classes in
the training set.

o Classifier-level methods that keep the training set unchanged
and adjust the learning and inference algorithms.
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Data Level Méthods

The best and simplest method is to add new images for minority
classes.

However, there are other methods like oversampling and
undersampling

Baseline

Remove randomly from majority

Replicate randomly selected
classes

samples from minority classes

" .
o
° label0 label 1
iabel0 [

Oversampling Undersampling
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Classifier Level Méthods

® Thresholding
Adjustment of the decision threshold of a classifier.
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Classifier Level Méthods

¢ Thresholding
Adjustment of the decision threshold of a classifier.
® Cost sensitive learning
This method assigns a different cost to the misclassification of

examples from different classes and can be implemented in
different ways.
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Classifier Level Méthods

¢ Thresholding
Adjustment of the decision threshold of a classifier.
© Cost sensitive learning
This method assigns a different cost to the misclassification of

examples from different classes and can be implemented in
different ways.

® Hybrid of methods
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Methods of addressing imbalance compared in this paper

¢ Random minority oversampling

¢ Random majority undersampling

Thresholding with prior class probabilities

Oversampling with thresholding

Undersampling with thresholding
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Methods of addressing imbalance compared on MNIST and CIFAR-10
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Figure 6: Comparison of methods with respect to accuracy on MNIST (a
- ¢) and CIFAR-10 (d - f).

[Buda et al., 2017]
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Method p=01,p=10 p=08,pp=50 ©n=0.9,p=100

Baseline 99.41 96.31 90.74 90.46 90.05
Oversampling 99.35 95.06 88.38 88.39 88.17
Undersampling 96.85 94.98 88.35 84.08 83.74

Comparison of results on ImageNet with respect to multi-class
ROC AUC.

[Buda et al., 2017]

uw=0.1 p=10,0=0.8, p=>50 and p=0.9,p =100
correspond to 100 minority classes with imbalance ratio of 10, 800

minority classes with imbalance of 50, and 900 minority classes
with imbalance ratio of 100, respectively.
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Next steps

® Adding new images to the dataset for the minority classes
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Next steps

© Adding new images to the dataset for the minority classes

® Applying the class imbalance management methods
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Next steps

© Adding new images to the dataset for the minority classes
¢ Applying the class imbalance management methods

® |Implementation of an embedded prototype
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