

Efficient Transformers

Paul Gay

Roughly, how they appear

Before 2018,

Roughly, how they appear

after 2019,

Transformurs

- Attention
 - new model for sequential data
- Text generation $P(w_t|w_{t-1})$:
 - predict the next word given the previous ones

- Self supervised loss function
- New state of the art on word embeddings

Non contextual embedding

• Semantic representation to convert a word in vector

King - *man* + *woman* \approx *queen*

Contextual word embedding

• Make the difference between bank and bank?

I catch a fish from the river bank

And I attacked a bank...

- Context : depends on surrounding words
 - **Difference** w.r.t. word2vec which are dictionnaries

6/50

• This is what transformers can do

In practice

These models have enabled the learning on huge corpora and set a new state of the art in NLP.

Many models available for different languages and domains

7 / 50

• Hugging Face Library

In practice

These models have enabled the learning on huge corpora and set a new state of the art in NLP.

- Many models available for different languages and domains
- Hugging Face Library
- Come to see them at IAPau4!

Live conference on Friday : 03/12/2021

Learn on a sequence

- Words are given one by one to the RNN to refine its latent state h_i
- Compute the state h_i requires to first compute the previous states $h_{1:i-1}$

RNN vs attention

- Contextual representation $e_i^{context}$ is a weighted sum of the input vectors
- a_{ij} coefficients are attention weights

10/50

RNN vs attention

- Contextual representation $e_i^{context}$ is a weighted sum of the input vectors
- a_{ij} coefficients are attention weights

Commonly used in deep learning

Bahdanau et al. NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE. ICML, 2015

RNN vs attention

Advantage 1: information propagation

• Direct access to each word

=> Lower risk of forgetting than RNN

RNN vs attention

Advantage 2: Parallelisation

- The $e_i^{context}$ can be computed in parallel
 - Recall : with RNN, we would have need previous states
 - Faster learning enables bigger models

RNN vs attention

Drawback 1: Word sequence order

• The computation does not take into account the word position

We lost this information in $\sum_i a_{ji} e_i$

RNN vs attention

Drawback 2: Quadratic memory cost!

• We have to handle the matrix of the a_{ij} of size

 $n_{seq} \times n_{seq}$

• Usually, sequences are limited to $n_{seq} = 512$ ou 1024

Model interpretation

• Visualise the attention weights a_{ij} indicates what the model considers important or ignore

OpenNMT: Open-Source Toolkit for Neural Machine Translation

On this example, "*the*" depends heavily on "*can*".

Model interpretation

• Visualise the attention weights a_{ij} indicates what the model considers important or ignore

Quickly adopted in Vision, audio, text, graph, to increase model expression power.

Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. CVPR 2015

Transfomers are models based on attention

• First proposed for automatic translation

Vaswani et al. Attention is all you need. NIPS, 2017

• And then to create static embeddings (BERT)

Delvin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805, 2018

- Goal : to transform a sequence of vectors in a more meaningful sequence
- Main transformer building block, like convolutional layer for CNN

- Each input vector e_i is transformed :
 - $v_i = Ve_i$ // Value • $q_i = Qe_i$ // Query
 - $\circ k_i = Ke_i // Key$
- with *V*, *Q* et *K* learned matrices

- Attention weights computed from key and request vectors
- Final output $e^{context}$: weighted sum => information selection

"Key"", "Value" et "Query"?

Term originated from information retrieval

- Let's assume a database containing different objects
- Each object is described by a key vector

```
"Key"", "Value" et "Query"?
```


• Let's do a query :

query = "I want a blue unicorn"

• We transform this query into a vector

```
"Key"", "Value" et "Query"?
```


- Compute a score between the query and each key vector
- Here, the returned object will be the *1* (maximal score)

RequêteScoresClésValeursq $a_1 = 0.05$ k_1 An $a_2 = 0.6$ k_2 Attention $a_3 = 0.1$ k_3 Can $a_4 = 0.2$ k_4 be $a_5 = 0.05$ k_5 efficient

$$[a_1,\ldots,a_5] = softmax(\frac{1}{\sqrt{d}}[q^Tk_1,\ldots,q^Tk_5])$$

- With Bert, values, queries and keys correspond to word tokens
- weighted sum rather than 1 best selection

Multiple heads

- + Heads : triplets of key/value/query ($\approx \, 10$)
- Implicit speicialisation of different concepts
 - subject/verb, punctuation,...
- Head fusion with a fully connected layer (or other)

Encoder-Decoder Architecture

Elmo, BERT (encoder), GPT (decoder)

Input encoding

• Out of word vocabulary

Sub token division

undo => un - do

• Byte pair encoding (BPE)

Detection of recurrent patterns

Position encoding

 ${\rm Adding} \ {\rm a} \ {\rm encoding} \ p$

- input = BPE + p
- *p* encode the position
- cosinus, sinus function

Position encoding

• Encoding of word position

$$PE(pos, 2i) = sin(pos/10000^{2i/d})$$

 $PE(pos, 2i + 1) = cos(pos/10000^{2i/d})$

with pos the position, i the dimension index, and d the embedding dimension

Position encoding

- Relative position can be computed with a linear function
 - in other words the model could compute distances between words

Encoding block

Loss function • In a block : An attention can be efficient e_1 e_2 e_3 e_4 e_5 _ auto-attention layer normalisation perceptron multi-couches normalisation Auto-attention bloc **≜** Input Encodeur Décodeur

Encoding block

• In a block :

Residual connection

Encoding block

- Decoder similar to the encoder
- Only has access to previous tokens

Learning

Auto supervision :

- Predict a mask
 An attention can be ????
- next sentence prediction
- and so on

Model analysis

Head 1-1 Attends broadly		Head 3-1 Attends to next token		Head 8-7 Attends to [SEP]		Head 11-6 Attends to periods	
found	found	found	found	found	found	found	found
in	in	in	in	in	in	ind	in
taiwan	taiwan	taiwan	taiwan	taiwan	taiwan	taiwan	taiwan
	All.		<u> </u>	All.			
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	SEP]	[SEP]	[SEP]
the	the	the	the	the	the	the	the
wingspan	wingspan	wingspan	wingspan	wingspan	wingspan	wingspan	wingspan
is	is	is	is	is	is	is	is
24	24	24	-24	24	24	24	24
-(1)	- (23)	7	-	-~~~	<u> </u>	-<>	
28	28	28	-28	28	28	28	28
mm	mm	mm	mm	mm	mm	mm 44	mm
				.4		.4	.
[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]	[SEP]

36/50
Model analysis

Clark et al. What Does BERT Look At? An Analysis of BERT's Attention. ACL 2019

A success

- Many application in NLP
 - Adding a simple classifier + Fine tuning
 - État de l'art en classification, Q&A, traduction et bien d'autres
- Integration in Google in 2019
- Text generation with GPT

https://www.theguardian.com/commentisfree/2020/sep/08/robotwrote-this-article-gpt-3

Bertology

Many models have been proposed

- CamemBERT
- BART
- Electra
- DistillBERT
- GPT ...

Qiu et al. Pre-trained Models for Natural Language Processing: A Survey. arxiv:2003.08271, 2020

An other type of machine learning

Learning requires dozens even hundreds of gpus

	#Params (millions)	# Taille du corpus
Resnet	60	100M images
Bert	340	3000M tokens
GPT	115	800M tokens
GPT-2	1500	10B tokens
GPT-3	175000	300B tokens

How can we make them lighter?

Tay et al. Efficient Transformers: A Survey. arxiv:2009.06732 2020

Problem with attention

• Most works focus on reducing the quadratic complexity of attention.

Limit the field of view of attention:

- Fixed or Learned patterns (Block wise, Strided,...)
- Use one token as a Global memory
- attend to random keys
- Or a combination of methods:

Zaheer et al. Big Bird: Transformers for Longer Sequences. NIPS 2020

Performers

Replace the attention score:

$$a_{i,1:L} = softmax(\frac{1}{\sqrt{d}}[q_i^T k_1, \dots, q_i^T k_L])$$

Performers

Replace the attention score:

$$a_{i,1:L} = softmax(\frac{1}{\sqrt{d}}[q_i^T k_1, \dots, q_i^T k_L])$$

... by using random features

 $a_{i,j} = q'_i. k'_j = \phi(q_i). \phi(k_j)$

$$\phi(X) = \frac{c}{\sqrt{M}}f(WX + b)$$

45/50

Performers

This allows for linear Complexity with respect to sequence length.

Public benchmarks

Comparison of transformers along 5 tasks:

• LONG LISTOPS

INPUT: [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1 5 8 9, 2]] OUTPUT: 5

- TEXT CLASSIFICATION
- DOCUMENT RETRIEVAL
- IMAGE CLASSIFICATION
- PATHFINDER

Tay et al. LONG RANGE ARENA: A BENCHMARK FOR EFFICIENT TRANSFORMERS. arXiv:2011.04006. 2021

Benchmarks results

Comparison of transformers with LRA score : Integral over the 5 tasks

48/50

Ressources

• blog post on the mechanism of transformer

Blogs de Jay Alammar

http://vandergoten.ai/2018-09-18-attention-is-all-you-need/

• Implementations

https://blog.floydhub.com/the-transformer-in-pytorch/

https://huggingface.co

• The annotated transformer "Attention is all you need" with code

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Thanks for your attention